S. S. Gabriyelyan

FINITELY GENERATED SUBGROUPS AS VON NEUMANN RADICALS OF AN ABELIAN GROUP

Abstract

S. S. Gabriyelyan. Finitely generated subgroups as von Neumann radicals of an Abelian group, Mat. Stud. 38 (2012), 124-138.

Let G be an infinite Abelian group. We give a complete characterization of those finitely generated subgroups of G which are the von Neumann radicals for some Hausdorff group topologies on G. It is proved that every infinite finitely generated Abelian group admits a complete Hausdorff minimally almost periodic group topology. The latter result resolves a particular case of Comfort's problem. C. С. Габриелян. Конечно порожденные подгруппи абелевой группы G, являющиеся ее радикалами фон Неймана // Мат. Студії. - 2012. - Т.38, №2. - С.124-138.

В статье дается полная характеризация конечно порожденных подгрупп бесконечной абелевой группы G, являющихся радикалами фон Неймана для хаусдорфовых топологий на G. Доказано что каждая бесконечная конечно порожденная абелевая группа допускает полную хаусдорфовую минимально почти периодическую топологию. Последний результат частично решает проблему Комфорта.

1. Introduction. Let G be an Abelian group G. Recall that G is bounded if there exists a positive integer n such that $n g=0$ for every $g \in G$, and the minimal integer n with this property is called the exponent of G denoted by $\exp (G)$. When G is not bounded, we write $\exp (G)=\infty$ and say that G has infinite exponent.

For an Abelian topological group X, X^{\wedge} denotes the group of all continuous characters on X endowed with the compact-open topology and

$$
\mathbf{n}(X)=\bigcap_{\chi \in X^{\wedge}} \operatorname{ker} \chi
$$

denotes the von Neumann radical of X. The richness of the dual group X^{\wedge} is one of the most important properties of X, and it is characterized by the von Neumann radical $\mathbf{n}(X)$.

Following J. von Neumann ([12]), a group X is called minimally almost periodic (MinAP) if $\mathbf{n}(X)=X$, and it is called maximally almost periodic if $\mathbf{n}(X)=0$.

The following proposition (proved in Section 3) is a simple corollary of the main result of [6].

Theorem 1. Every infinite Abelian group admits a complete non-discrete Hausdorff group topology with trivial von Neumann radical.

2010 Mathematics Subject Classification: 22A10, 43A40, 54H11.
Keywords: characterized group, T-sequence, von Neumann radical, finitely generated subgroup.

A much deeper question is whether every infinite Abelian group admits a Hausdorff group topology with a non-zero von Neumann radical. A positive answer to this question was given by M. Ajtai, I. Havas and J. Komlós ([1]). E. G. Zelenyuk and I. V. Protasov ([15]) proved that every infinite Abelian group G admits a complete Hausdorff group topology for which characters do not separate points. I. V. Protasov ([14]) posed the question whether every infinite Abelian group admits a minimally almost periodic group topology. A simple example of a bounded group G which does not admit any Hausdorff group topology τ such that (G, τ) is minimally almost periodic is given by D. Remus ([5]). This justifies the following problem.

Question (Comfort's Problem 521 [5]). Does every Abelian group which is not of bounded order admit a minimally almost periodic topological group topology? What about the countable case?

Moreover, it was not known even whether every infinite finitely generated Abelian group G admits a Hausdorff minimally almost periodic group topology. We answer this question in the affirmative theorem.

Theorem 2. Every infinite finitely generated Abelian group G admits a complete Hausdorff minimally almost periodic group topology.

Let G be an infinite Abelian group and H its infinite finitely generated subgroup. By Theorem 2, there is a Hausdorff MinAP group topology τ^{\prime} on H. Let τ be a group topology on G such that $H \in \tau$ and $\left.\tau\right|_{H}=\tau^{\prime}$. Then the von Neumann radical of (G, τ) is H (see Lemma 9 below). So, every infinite finitely generated subgroup of an Abelian group G can be considered as the von Neumann radical for some Hausdorff group topology on G. Noting that every finite group is finitely generated, it is natural to ask, for which finite subgroup H of an infinite Abelian group G there is a Hausdorff group topology τ on G such that H is the von Neumann radical of (G, τ).

Let G be an infinite Abelian group. We denote by $\mathcal{N} \mathcal{R}(G)$ (by $\mathcal{N} \mathcal{R} \mathcal{C}(G)$) the set of all subgroups H of G for which there exists a (complete) non-discrete Hausdorff group topology τ on G such that $\mathbf{n}(G, \tau)=H$. It is clear that $\mathcal{N} \mathcal{R C}(G) \subseteq \mathcal{N} \mathcal{R}(G)$. Therefore, by Theorem 1, $\{0\} \in \mathcal{N} \mathcal{R C}(G)$, and, by $[15], \mathcal{N} \mathcal{R C}(G) \neq\{\{0\}\}$. The general question of describing the sets $\mathcal{N} \mathcal{R}(G)$ and $\mathcal{N R C}(G)$ was raised in [9].

The main goal of the paper is to describe all finitely generated subgroups of an infinite Abelian group G which are contained in $\mathcal{N} \mathcal{R}(G)$.

For an Abelian group G, the symbols $\mathcal{F G S}(G)$ and $\mathcal{F S}(G)$ denote the set of all finitely generated subgroups and finite subgroups G, respectively.

Theorem 2 is an immediate consequence of the following theorem.
Theorem 3. Let G be an Abelian group that is not bounded. Then for every finitely generated subgroup H of G there exists a complete Hausdorff group topology τ on G such that $H=\mathbf{n}(G, \tau)$, i.e., $\mathcal{F G S}(G) \subseteq \mathcal{N} \mathcal{R C}(G)$.

The case of bounded groups is more complicated. The direct sum of ω copies of an Abelian group H we denote by $H^{(\omega)}$.

Theorem 4. Let G be an infinite Abelian bounded group. Let $H \in \mathcal{F} \mathcal{S}(G)=\mathcal{F G S}(G)$. Then the following statements are equivalent: 1) G contains a subgroup of the form $H^{(\omega)}$; 2) $H \in \mathcal{N} \mathcal{R C}(G)$; 3) $H \in \mathcal{N} \mathcal{R}(G)$.

As an evident corollary of Theorems 3 and 4 we obtain the following result resolving $[9$, Problem 3].

Corollary 1. Let G be an infinite Abelian group and $H \in \mathcal{F G S}(G)$. Then $H \in \mathcal{N} \mathcal{R}(G)$ if and only if $H \in \mathcal{N R C}(G)$, i.e.,

$$
\mathcal{F S}(G) \cap \mathcal{N \mathcal { R }}(G)=\mathcal{F S}(G) \cap \mathcal{N} \mathcal{R C}(G), \text { and } \mathcal{F G S}(G) \cap \mathcal{N} \mathcal{R}(G)=\mathcal{F G \mathcal { G }}(G) \cap \mathcal{N} \mathcal{R C}(G)
$$

By Corollary 1, in all subsequent theorems and corollaries of this section only the (simpler) option $\mathcal{N} \mathcal{R}(G)$ is considered.

Also as a trivial corollary of Theorems 3 and 4 we obtain the main result of [9].
Corollary 2 ([9]). An Abelian group G admits a Hausdorff group topology with non-trivial finite von Neumann radical if and only if it is not torsion free.

Proof. Clearly, if G admits a Hausdorff group topology with non-trivial von Neumann radical it must contain a nonzero element of finite order. Conversely, since every finite subgroup is finitely generated and since any infinite Abelian bounded group contains a subgroup of the form $\mathbb{Z}(p)^{(\omega)}$ for some prime p, the corollary immediately follows from Theorems 3 and 4.

The following problem was posed in [9, Problem 6]: describe all infinite Abelian groups G such that $\mathcal{F S}(G) \subset \mathcal{N} \mathcal{R}(G)$. (We note that this inclusion is strict since $\mathcal{N} \mathcal{R}(G)$ contains a countably infinite subgroup.) A solution to this problem is provided by the following theorem.

Theorem 5. Let G be an infinite Abelian group. Then the following statements are equivalent: 1. $\mathcal{F G \mathcal { G }}(G) \subseteq \mathcal{N} \mathcal{R}(G) ;$ 2. $\mathcal{F} \mathcal{S}(G) \subset \mathcal{N} \mathcal{R}(G) ; 3 . G$ satisfies one of the following conditions: 1) $\exp G=\infty$; 2) $\exp G=m$ is finite and G contains a subgroup of the form $\mathbb{Z}(m)^{(\omega)}$.

We can reformulate Theorem 5 for bounded groups as follows. It is well known that a bounded group G has the form $G=\bigoplus_{p \in M} \bigoplus_{i=1}^{n_{p}} \mathbb{Z}\left(p^{i}\right)^{\left(k_{i, p}\right)}$, where M is a finite set of prime numbers. Leading Ulm-Kaplansky invariants of G are the cardinal numbers $k_{n_{p}, p}, p \in M$.

Corollary 3. All finite subgroups H of an infinite bounded Abelian group G belong to $\mathcal{N} \mathcal{R}(G)$ if and only if all leading Ulm-Kaplansky invariants of G are infinite.

The article is organized as follows. In Section 2 we prove some auxiliary lemmas that will be used to prove the main results. In Section 3 special T-sequences are constructed for some Abelian groups. These T-sequences are used to define the topologies with the desired property in Theorem 3. In the last Section 4 we prove Theorems 3,4 and 5.
2. Auxiliary lemmas. Let us recall that a subset X of an Abelian group G is called independent provided that for every finite sequence x_{1}, \ldots, x_{n} of pairwise distinct elements of X and each sequence m_{1}, \ldots, m_{n} of integer numbers, if $m_{1} x_{1}+\cdots+m_{n} x_{m}=0$ then $m_{i} x_{i}=0$ for all $i \in\{1, \ldots, n\}$.

Lemma 1. Let $\left\{b_{n}\right\}_{n \in \omega}$ be an independent sequence of an Abelian group G. Then for every nonzero element g of G there is n_{0} such that the set $\left\{g, b_{n_{0}}, b_{n_{0}+1}, \ldots\right\}$ is independent.

Proof. Set $H=\bigoplus_{n \in \omega}\left\langle b_{n}\right\rangle$. If the intersection $H \cap\langle g\rangle$ is trivial then one can take $n_{0}=0$. Otherwise, $H \cap\langle g\rangle$ is a subgroup of $\langle g\rangle$, hence $H \cap\langle g\rangle=\langle m g\rangle \neq 0$ for some $m \in \mathbb{N}$. The support of $m g \in \bigoplus_{n}\left\langle b_{n}\right\rangle$ is finite, so there exists k such that $m g \in \bigoplus_{n=0}^{k}\left\langle b_{n}\right\rangle$. Thus, $H \cap\langle g\rangle=\langle m g\rangle \subseteq \bigoplus_{n=0}^{k}\left\langle b_{n}\right\rangle$. Therefore, $\langle g\rangle \cap \bigoplus_{n=k+1}^{\infty}\left\langle b_{n}\right\rangle=0$. Putting $n_{0}=k+1$ we obtain that the set $\left\{g, b_{n_{0}}, b_{n_{0}+1}, \ldots\right\}$ is independent.

As usual, for an element g of an Abelian group G, we denote by $\langle g\rangle$ the subgroup of G generated by g.

For the proof of Theorem 4 we need the following lemma.
Lemma 2. Let G be an infinite Abelian group and $e_{1}, \ldots, e_{q} \in G$. Then the following assertions are equivalent:

1. G contains a subgroup of the form $\left\langle e_{1}\right\rangle^{(\omega)} \oplus\left\langle e_{2}\right\rangle^{(\omega)} \oplus \cdots \oplus\left\langle e_{q}\right\rangle^{(\omega)}$;
2. G contains a subgroup of the form $\left\langle e_{i}\right\rangle^{(\omega)}$ for every $1 \leqslant i \leqslant q$.

Proof. We need to prove only the implication $(2) \Rightarrow(1)$. It is easy to see that we can restrict ourselves to the case when e_{i} has a finite order n_{i} for every $1 \leqslant i \leqslant q$.

Let $p_{1}^{b_{1}} \ldots p_{l}^{b_{l}}$ be the prime decomposition of the least common multiple of n_{1}, \ldots, n_{q}. Since any $p_{j}^{b_{j}}$ is a divisor of some $n_{k(j)}$, by hypothesis, G contains a subgroup of the form

$$
\bigoplus_{n=1}^{\infty} H_{n}^{j}, \quad \text { where } H_{n}^{j} \cong \mathbb{Z}\left(p_{j}^{b_{j}}\right)
$$

Thus, G contains the following subgroup

$$
\bigoplus_{i=1}^{q}\left(\bigoplus_{n=1}^{\infty} H_{n q+i}^{1} \oplus \bigoplus_{n=1}^{\infty} H_{n q+i}^{2} \oplus \cdots \oplus \bigoplus_{n=1}^{\infty} H_{n q+i}^{l}\right) .
$$

Evidently, the group $\bigoplus_{n=1}^{\infty} H_{n q+i}^{1} \oplus \bigoplus_{n=1}^{\infty} H_{n q+i}^{2} \oplus \cdots \oplus \bigoplus_{n=1}^{\infty} H_{n q+i}^{l}$ contains a subgroup of the form $\left\langle e_{i}\right\rangle^{(\omega)}$ for every $1 \leqslant i \leqslant q$.

Let us consider the group $\mathbb{Z}\left(p^{\infty}\right)$ with discrete topology. Then $\mathbb{Z}\left(p^{\infty}\right)^{\wedge}=\Delta_{p}$ is the compact group of p-adic integers which elements are denoted by $x=\left(a_{i}\right), 0 \leqslant a_{i}<p$, and the identity is $\mathbf{1}=(1,0,0, \ldots)$. By [10, Remark 10.6], $\langle\mathbf{1}\rangle$ is dense in Δ_{p} and, by [10, 25.2], $(\lambda, \mathbf{1})=\exp \{2 \pi i \cdot \lambda\}$ for every $\lambda \in \mathbb{Z}\left(p^{\infty}\right)$. Following [10, 10.4], we denote by $\Lambda_{k}, k \geqslant 1$, the set of all $\mathbf{x}=\left(x_{0}, \ldots, x_{k-1}, x_{k}, \ldots\right) \in \Delta_{p}$ such that $x_{0}=\cdots=x_{k-1}=0$ and put $\Lambda_{0}=\Delta_{p}$. Note that Λ_{k} is just $p^{k} \Delta_{p}$.

A group G with the discrete topology is denoted by G_{d}. If H is a subgroup of $\left(G_{d}\right)^{\wedge}$ then $H^{\perp}:=\{g \in G:(g, h)=1 \forall h \in H\}$. We use the following lemma to prove Theorem 3.

Lemma 3. Let $G=\mathbb{Z}\left(p^{\infty}\right)+H$, where H is a finite group, endowed with the discrete topology. Let H_{1} be a finite group such that $G=\mathbb{Z}\left(p^{\infty}\right) \oplus H_{1}$. Then there exist $k \geqslant 0$ and a finite set $S_{0} \subset\langle\mathbf{1}\rangle \oplus H_{1}^{\wedge}$ such that $H^{\perp}=\left\langle S_{0}\right\rangle+\Lambda_{k}$. In particular, the finitely generated subgroup $\left\langle S_{0} \cup\left\{p^{k} \mathbf{1}\right\}\right\rangle$ is dense in H^{\perp}.
Proof. Let $H=\left\langle e_{1}\right\rangle \oplus \cdots \oplus\left\langle e_{l}\right\rangle \oplus\left\langle e_{l+1}\right\rangle \oplus \cdots \oplus\left\langle e_{q}\right\rangle$, where $o\left(e_{i}\right)=p^{w_{i}}$ for $1 \leqslant i \leqslant l$ and $o\left(e_{i}\right)=p_{i}^{w_{i}}, p_{i} \neq p$, for $l<i \leqslant q$. Then for some integer t we have

$$
H_{1}=\left\langle g_{1}\right\rangle \oplus \cdots \oplus\left\langle g_{t}\right\rangle \oplus\left\langle e_{l+1}\right\rangle \oplus \cdots \oplus\left\langle e_{q}\right\rangle
$$

where $o\left(g_{i}\right)=p^{r_{i}}$ for some natural number r_{i} and $e_{i}=a_{0}^{i} g_{0}+a_{1}^{i} g_{1}+\cdots+a_{t}^{i} g_{t}, 1 \leqslant i \leqslant l$, where $g_{0}=\frac{1}{p^{r_{0}}} \in \mathbb{Z}\left(p^{\infty}\right)$, and $0 \leqslant a_{j}^{i}<p^{r_{i}}$ for every $0 \leqslant j \leqslant t$. Since H_{1} is finite, we will
identify H_{1} with H_{1}^{\wedge}. Let $\omega=\mathbf{x}+\lambda_{1} g_{1}+\cdots+\lambda_{t} g_{t}+\lambda_{t+1} e_{l+1}+\cdots+\lambda_{t+q-l} e_{q} \in G^{\wedge}$, where $\mathbf{x}=\left(x_{0}, x_{1}, \ldots\right) \in \Delta_{p}, 0 \leqslant \lambda_{i}<p^{r_{i}}$ for $1 \leqslant i \leqslant t$ and $0 \leqslant \lambda_{t+j}<p_{l+j}^{w_{l+j}}$ for $1 \leqslant j \leqslant q-l$. By definition, $\omega \in H^{\perp}$ iff $\left(\omega, e_{i}\right)=1$ for every $1 \leqslant i \leqslant q$. In particular, for every $1 \leqslant j \leqslant q-l$,

$$
\left(\omega, e_{l+j}\right)=\frac{\lambda_{t+j}}{p_{l+j}^{w_{l+j}}}=0(\bmod 1)
$$

Since $\lambda_{t+j}<p_{l+j}^{w_{l+j}}$, we have $\lambda_{t+j}=0$ for every $1 \leqslant j \leqslant q-l$. So, $\omega \in H^{\perp}$ if and only if it has the form $\omega=\mathbf{x}+\lambda_{1} g_{1}+\cdots+\lambda_{t} g_{t}$ and $\left(\omega, e_{i}\right)=1, \forall 1 \leqslant i \leqslant l$. Thus, by [10, 25.2], $\omega \in H^{\perp}$ if and only if $\lambda_{t+j}=0$, for every $1 \leqslant j \leqslant q-l$, and for any $1 \leqslant i \leqslant l,(\bmod 1)$

$$
\begin{equation*}
\frac{a_{0}^{i}}{p^{r_{0}}}\left(x_{0}+x_{1} p+\cdots+x_{r_{0}-1} p^{r_{0}-1}\right)+\frac{\lambda_{1} a_{1}^{i}}{p^{r_{1}}}+\cdots+\frac{\lambda_{t} a_{t}^{i}}{p^{r_{t}}}=0 . \tag{1}
\end{equation*}
$$

Denote by S_{0} the set of all $\omega \in H^{\perp}$ which have the form

$$
\omega=\mathbf{x}+\lambda_{1} g_{1}+\cdots+\lambda_{t} g_{t}, \mathbf{x}=\left(x_{0}, x_{1}, \ldots, x_{r_{0}-1}, 0 \ldots\right)
$$

where \mathbf{x} and $\lambda_{1}, \ldots, \lambda_{t}$ satisfy (1). By definition, $S_{0} \subset H^{\perp} \cap\left(\langle\mathbf{1}\rangle \oplus H_{1}^{\wedge}\right)$ and for every $\omega \in H^{\perp}$ there is $\omega_{0} \in S_{0}$ such that $\omega-\omega_{0}=\left(0, \ldots, 0_{r_{0}-1}, x_{r_{0}}, x_{r_{0}+1}, \ldots\right) \in \Lambda_{r_{0}}$. Set $k=r_{0}$. Then $H^{\perp} \subseteq\left\langle S_{0}\right\rangle+\Lambda_{k}$. The converse inclusion follows from (1). By [10, Remark 10.6], $\left\langle p^{k} \mathbf{1}\right\rangle$ is dense in Λ_{k}. So, $\left\langle S_{0} \cup\left\{p^{k} 1\right\}\right\rangle$ is dense in H^{\perp}.
3. Construction of T-sequences. In this section we construct T-sequences which will be needed for the proofs of the main results.

Following E. G. Zelenyuk and I. V. Protasov ([15], [16]), we say that a sequence $\mathbf{d}=\left\{d_{n}\right\}$ in a group G is a T-sequence if there is a Hausdorff group topology on G with respect to which d_{n} converges to zero. The group G equipped with the finest group topology with this property is denoted by (G, \mathbf{d}). We note also that, by [16, Theorem 2.3.11], the group (G, \mathbf{d}) is complete.

For a sequence $\left\{d_{n}\right\}$ and $k, m \in \mathbb{N}$, one defines ([15])

$$
\begin{gathered}
A(k, m)=\left\{n_{1} d_{r_{1}}+\cdots+n_{s} d_{r_{s}}: m \leqslant r_{1}<\cdots<r_{s}\right. \\
\left.n_{1}, n_{2}, \ldots, n_{s} \in \mathbb{Z} \backslash\{0\}, \sum_{i=1}^{s}\left|n_{i}\right| \leqslant k+1\right\} \cup\{0\}
\end{gathered}
$$

In this section we make extensive use of the following Protasov-Zelenyuk's criterion.
Theorem 6 ([15]). A sequence $\left\{d_{n}\right\}$ of elements of an Abelian group G is a T-sequence if and only if, for every integer $k \geqslant 0$ and for each element $g \in G$ with $g \neq 0$, there is an integer m such that $g \notin A(k, m)$.

For a prime p and $n \in \mathbb{N}$ we set $f_{n}=p^{n^{3}-n^{2}}+\cdots+p^{n^{3}-2 n}+p^{n^{3}-n}+p^{n^{3}} \in \mathbb{Z}$. Then $f_{n}<2 p^{n^{3}} \leqslant p^{n^{3}+1}$. For $0<r_{1}<r_{2}<\cdots<r_{v}$ and integers $l_{1}, l_{2}, \ldots, l_{v}$ such that $\sum_{i=1}^{v}\left|l_{i}\right| \leqslant$ $k+1$, we have

$$
\begin{equation*}
\left|l_{1} f_{r_{1}}+l_{2} f_{r_{2}}+\cdots+l_{v} f_{r_{v}}\right|<(k+1) f_{r_{v}} \leqslant(k+1) p^{r_{v}^{3}+1} \tag{2}
\end{equation*}
$$

Lemmas 4 and 5 are slight modifications of items (1) and (2) in the proof of [9, Theorem 1].

Lemma 4. Let $G=\left\langle e_{0}\right\rangle \oplus\left\langle e_{1}\right\rangle \oplus \cdots \oplus\left\langle e_{q-1}\right\rangle$, where $\left\langle e_{0}\right\rangle \cong \mathbb{Z}$. Given a prime p and $\varepsilon_{n} \in\{-1,0,1\}$ for $n \geq 1$, the formulas

$$
d_{2 n}=p^{n} e_{0} \quad \text { and } \quad d_{2 n-1}=f_{n} e_{0}+\varepsilon_{n} e_{n(\bmod q)}
$$

define a T-sequence $\left\{d_{n}\right\}$ in G.
Proof. Fix an integer $k \geqslant 0$ and an element $g \in G$ with $g \neq 0$. By Theorem 6, it suffices to prove that $g \notin A(k, m)$ for some $m \in \mathbb{N}$. Let $g=b e_{0}+a_{1} e_{1}+\cdots+a_{q-1} e_{q-1}$, where $b \in \mathbb{Z}$, $0 \leqslant a_{i}<o\left(e_{i}\right)$ if $o\left(e_{i}\right)<\infty$ and $a_{i} \in \mathbb{Z}$ if $o\left(e_{i}\right)=\infty$. Let $t=\left(|b|+\left|a_{1}\right|+\cdots+\left|a_{q-1}\right|\right)(k+1)$ and $m=20 t$. We are going to check that $g \notin A(k, m)$. To accomplish this, we pick an arbitrarily $\sigma \in A(k, m)$ with $\sigma \neq 0$ and prove that $g \neq \sigma$. To this end, we prove that $\left|\phi_{0}\right|>b$, where ϕ_{0} is the coefficient of e_{0} in σ.

Since the sequence d_{n} is defined by two different subsequences, we have to consider some particular cases to estimate ϕ_{0}.
a) Assume that

$$
\sigma=l_{1} d_{2 r_{1}}+l_{2} d_{2 r_{2}}+\cdots+l_{s} d_{2 r_{s}}=\left(l_{1} p^{r_{1}}+\cdots+l_{s} p^{r_{s}}\right) e_{0}=p^{r_{1}} \cdot \sigma^{\prime} \cdot e_{0}
$$

where $m \leqslant 2 r_{1}<2 r_{2}<\cdots<2 r_{s}$ and $\sigma^{\prime} \in \mathbb{Z}$. Since $\sigma^{\prime} \neq 0$, we have $p^{r_{1}}>p^{5|b|}>|b|$, and $\sigma \neq g$.
b) Assume that $\sigma=l_{1} d_{2 r_{1}-1}+l_{2} d_{2 r_{2}-1}+\cdots+l_{s} d_{2 r_{s}-1}$, where $m<2 r_{1}-1<2 r_{2}-1<$ $\cdots<2 r_{s}-1$ and the integers $l_{1}, l_{2}, \ldots, l_{s}$ are such that $l_{s} \neq 0$ and $\sum_{i=1}^{s}\left|l_{i}\right| \leqslant k+1$. Then

$$
\sigma=\left(l_{1} f_{r_{1}}+\cdots+l_{s-1} f_{r_{s-1}}+l_{s} f_{r_{s}}\right) e_{0}+l_{1} \varepsilon_{r_{1}} e_{r_{1}(\bmod \mathrm{q})}+\cdots+l_{s} \varepsilon_{r_{s}} e_{r_{s}(\bmod \mathrm{q})}
$$

Since $n^{3}<(n+1)^{3}-(n+1)^{2}$ and $r_{s}>|b|+(k+1)$, by (2), we can estimate the coefficient ϕ_{0} of e_{0} in σ as follows

$$
\begin{aligned}
\left|\phi_{0}\right| \geqslant & \left|l_{1} f_{r_{1}}+\cdots+l_{s-1} f_{r_{s-1}}+l_{s} f_{r_{s}}\right|-(k+1)>f_{r_{s}}-k \cdot p^{r_{s-1}^{3}+1}-(k+1)= \\
& =p^{r_{s}^{3}}+\left(p^{r_{s}^{3}-r_{s}}+\cdots+p^{r_{s}^{3}-r_{s}^{2}}-k \cdot p^{r_{s-1}^{3}+1}-k-1\right)>p^{r_{s}^{3}}>|b|
\end{aligned}
$$

Hence $\phi_{0} \neq b$ and $\sigma \neq g$.
c) Assume that $\sigma=l_{1} d_{2 r_{1}-1}+l_{2} d_{2 r_{2}-1}+\cdots+l_{s} d_{2 r_{s}-1}+l_{s+1} d_{2 r_{s+1}}+\cdots+l_{h} d_{2 r_{h}}$, where $0<s<h$ and

$$
\begin{gathered}
m<2 r_{1}-1<2 r_{2}-1<\cdots<2 r_{s}-1 \\
m \leqslant 2 r_{s+1}<2 r_{s+2}<\cdots<2 r_{h}, \quad l_{i} \in \mathbb{Z} \backslash\{0\}, \sum_{i=1}^{h}\left|l_{i}\right| \leqslant k+1 .
\end{gathered}
$$

Since the number of summands with different powers of p in $f_{r_{s}}$ is $r_{s}+1>10(k+1)$ and $h-s<k+1$, by a simple pigeon-hole principle, there exists $r_{s}-2>i_{0}>2$ such that for every $1 \leqslant w \leqslant h-s$ we have

$$
\text { either } r_{s+w}<r_{s}^{3}-\left(i_{0}+2\right) r_{s} \text { or } r_{s+w}>r_{s}^{3}-\left(i_{0}-1\right) r_{s}
$$

The set of all w such that $r_{s+w}<r_{s}^{3}-\left(i_{0}+2\right) r_{s}$ we denote by B (it can be empty or have the form $\{1, \ldots, \delta\}$ for some $1 \leqslant \delta \leqslant h-s)$. Set $D=\{1, \ldots, h-s\} \backslash B$. Thus,

$$
\begin{gathered}
\sigma=l_{1} \varepsilon_{r_{1}} e_{r_{1}(\operatorname{modq})}+\cdots+l_{s} \varepsilon_{r_{s}} e_{r_{s}(\bmod \mathrm{q})}+\left(l_{1} f_{r_{1}}+\cdots+l_{s-1} f_{r_{s-1}}\right) e_{0}+ \\
+\sum_{w \in B} l_{s+w} d_{2 r_{s+w}}+\left(l_{s} p^{r_{s}^{3}-r_{s}^{2}}+\cdots+l_{s} p^{r_{s}^{3}-\left(i_{0}+2\right) r_{s}}\right) e_{0}+\left(l_{s} p^{r_{s}^{3}-\left(i_{0}+1\right) r_{s}}+l_{s} p^{r_{s}^{3}-i_{0} r_{s}}\right) e_{0}+ \\
+\left(l_{s} p^{r_{s}^{3}-\left(i_{0}-1\right) r_{s}}+\cdots+l_{s} p^{r_{s}^{3}}\right) e_{0}+\sum_{w \in D} l_{s+w} d_{2 r_{s+w}} .
\end{gathered}
$$

Denote the coefficients of e_{0} in lines $1, \ldots, 5$ by A_{1}, \ldots, A_{5} respectively. Then $\phi_{0}=A_{1}+$ $\cdots+A_{5}$. We estimate A_{1}, \ldots, A_{5} as follows. For A_{1} we have

$$
\begin{equation*}
\left|A_{1}\right| \leqslant\left|l_{1}\right|+\cdots+\left|l_{s}\right| \leqslant k+1<p^{k+1}<p^{r_{s}^{3}-\left(i_{0}+1\right) r_{s}} . \tag{3}
\end{equation*}
$$

Since $l_{s} \neq 0$ and $k p<p^{k} p<p^{r_{s}}$, by (2), we have

$$
\begin{equation*}
\left|A_{2}\right|=\left|l_{1} f_{r_{1}}+\cdots+l_{s-1} f_{r_{s-1}}\right| \leqslant k \cdot p^{r_{s-1}^{3}+1}<p^{r_{s-1}^{3}+r_{s}} \leqslant p^{\left(r_{s}-1\right)^{3}+r_{s}}<p^{r_{s}^{3}-\left(i_{0}+1\right) r_{s}} . \tag{4}
\end{equation*}
$$

Since $3(k+1)<r_{s}<p^{r_{s}}$, for A_{3} we have

$$
\begin{gather*}
\left|A_{3}\right|=\left|\sum_{w \in B} l_{s+w} p^{r_{s+w}}+\left(l_{s} p^{r_{s}^{3}-r_{s}^{2}}+\cdots+l_{s} p^{r_{s}^{3}-\left(i_{0}+2\right) r_{s}}\right)\right|<\sum_{w \in B}\left|l_{s+w}\right| p^{r_{s}^{3}-\left(i_{0}+2\right) r_{s}}+ \\
+\left|l_{s}\right| 2 p^{r_{s}^{3}-\left(i_{0}+2\right) r_{s}}<3(k+1) p^{r_{s}^{3}-\left(i_{0}+2\right) r_{s}}<p^{r_{s}^{3}-\left(i_{0}+1\right) r_{s}} \tag{5}
\end{gather*}
$$

For A_{4} we have

$$
\begin{equation*}
p^{r_{s}^{3}-i_{0} r_{s}}<\left|A_{4}\right|=\left|l_{s}\right| p^{r_{s}^{3}-\left(i_{0}+1\right) r_{s}}+\left|l_{s}\right| p^{r_{s}^{3}-i_{0} r_{s}}<2 k \cdot p^{r_{s}^{3}-i_{0} r_{s}} . \tag{6}
\end{equation*}
$$

For A_{5} we have

$$
\begin{equation*}
A_{5}=l_{s} r^{r_{s}^{3}-\left(i_{0}-1\right) r_{s}}+\cdots+l_{s} p^{r_{s}^{3}}+\sum_{w \in D} l_{s+w} p^{r_{s+w}}=p^{r_{s}^{3}-\left(i_{0}-1\right) r_{s}} \cdot \sigma^{\prime \prime} \tag{7}
\end{equation*}
$$

where $\sigma^{\prime \prime} \in \mathbb{Z}$. We distinguish between two cases.
Case 1. $\sigma^{\prime \prime} \neq 0$. By (3)-(7), we can estimate ϕ_{0} from below as follows

$$
\begin{aligned}
\left|\phi_{0}\right| \geqslant\left|A_{5}\right| & -\left(\left|A_{1}\right|+\left|A_{2}\right|+\left|A_{3}\right|+\left|A_{4}\right|\right)>p^{r_{s}^{3}-\left(i_{0}-1\right) r_{s}}-3 p^{r_{s}^{3}-\left(i_{0}+1\right) r_{s}}-2 k p^{r_{s}^{3}-i_{0} r_{s}}> \\
& >p^{r_{s}^{3}-\left(i_{0}-1\right) r_{s}}-(2 k+3) p^{r_{s}^{3}-i_{0} r_{s}}>p^{r_{s}^{3}-i_{0} r_{s}}>p^{r_{s}^{2}}>p^{|b|}>|b| .
\end{aligned}
$$

Hence $\phi_{0} \neq b$ and $\sigma \neq g$.
Case 2. $\sigma^{\prime \prime}=0$. Then, by (3)-(5),

$$
\left|\phi_{0}\right| \geqslant\left|A_{4}\right|-\left(\left|A_{1}\right|+\left|A_{2}\right|+\left|A_{3}\right|\right)>p^{r_{s}^{3}-i_{0} r_{s}}-3 p^{r_{s}^{3}-\left(i_{0}+1\right) r_{s}}>p^{r_{s}^{3}-\left(i_{0}+1\right) r_{s}}>p^{r_{s}^{2}}>p^{|b|}>|b| .
$$

Hence $\phi_{0} \neq b$ and $\sigma \neq g$ too.
In the following lemma we consider $\mathbb{Z}\left(p^{\infty}\right)$ as a subgroup of $\left(-\frac{1}{2}, \frac{1}{2}\right]$ by modulo 1 . For the sake of clarity, $|x|(\bmod 1)$ denotes the distance from a real number x to the nearest integer. Putting

$$
\widetilde{f}_{n}=\frac{1}{p^{n^{3}-n^{2}}}+\cdots+\frac{1}{p^{n^{3}-2 n}}+\frac{1}{p^{n^{3}-n}}+\frac{1}{p^{n^{3}}} \in \mathbb{Z}\left(p^{\infty}\right)
$$

we obtain ([11])

$$
\begin{equation*}
0<\widetilde{f}_{n}=\frac{1}{p^{n^{3}-n^{2}}}+\cdots+\frac{1}{p^{n^{3}-2 n}}+\frac{1}{p^{n^{3}-n}}+\frac{1}{p^{n^{3}}}<\frac{n+1}{p^{n^{3}-n^{2}}} \rightarrow 0 \tag{8}
\end{equation*}
$$

Lemma 5. Let $G=\mathbb{Z}\left(p^{\infty}\right)+H$, where $H=\left\langle e_{0}\right\rangle \oplus \cdots \oplus\left\langle e_{q-1}\right\rangle$ is finite. Define

$$
d_{2 n}=\frac{1}{p^{n}} \in \mathbb{Z}\left(p^{\infty}\right) \text { and } d_{2 n-1}=\widetilde{f}_{n}+e_{n(\bmod q)} \text { for } n \geqslant 1 .
$$

Then $\mathbf{d}=\left\{d_{n}\right\}$ is a T-sequence in G.
Proof. Let $k \geqslant 0$ be an integer and $g \in G$ with $g \neq 0$. Then $g=\frac{b}{p^{z}}+a_{0} e_{0}+\cdots+$ $a_{q-1} e_{q-1}$, where $0 \leqslant a_{i}<o\left(e_{i}\right)$ and $\frac{b}{p^{z}} \in \mathbb{Z}\left(p^{\infty}\right)$. Let $\pi: G \rightarrow \mathbb{Z}\left(p^{\infty}\right)$ be the projection. Then $\pi(\langle g\rangle+H)=\left\langle\frac{1}{p^{\beta}}\right\rangle$.

Set $t=p(k+1)+\beta$ and $m=20 t$. By Theorem 6 , it is enough to prove that $g \notin A(k, m)$. To achieve this, we take $\sigma \in A(k, m) \backslash\{0\}$ arbitrarily and show that $g \neq \sigma$. To this end, we prove two inequalities $(\bmod 1)$:

1) $0<|\pi(\sigma)|$ and 2) if $\pi(g) \neq 0$, then $|\pi(\sigma)|<|\pi(g)|$. This gives $\sigma \neq g$.

Since the sequence d_{n} is defined by the two different subsequences, we have to consider some particular cases to estimate $\pi(\sigma)$.
a) Assume that $\sigma=l_{1} d_{2 r_{1}}+l_{2} d_{2 r_{2}}+\cdots+l_{s} d_{2 r_{s}}$, where $m \leqslant 2 r_{1}<2 r_{2}<\cdots<2 r_{s}$. If $\pi(g)=0$, then $\pi(\sigma)=\sigma \neq \pi(g)$. If $\pi(g) \neq 0$, then
$0<|\sigma|=|\pi(\sigma)|=\left|l_{1} d_{2 r_{1}}+l_{2} d_{2 r_{2}}+\cdots+l_{s} d_{2 r_{s}}\right| \leqslant \sum_{i=1}^{s} \frac{\left|l_{i}\right|}{p^{r_{i}}} \leqslant \frac{k+1}{p^{r_{1}}}<\frac{k+1}{p^{k+1+\beta}}<\frac{1}{p^{\beta}} \leqslant|\pi(g)|$.
So $\pi(\sigma) \neq \pi(g)$ and $\sigma \neq g$.
b) Assume that $\sigma=l_{1} d_{2 r_{1}-1}+l_{2} d_{2 r_{2}-1}+\cdots+l_{s} d_{2 r_{s}-1}$, where $m<2 r_{1}-1<2 r_{2}-1<$ $\cdots<2 r_{s}-1$ and the integers $l_{1}, l_{2}, \ldots, l_{s}$ are such that $l_{s} \neq 0$ and $\sum_{i=1}^{s}\left|l_{i}\right| \leqslant k+1$. Since $n^{3}<(n+1)^{3}-(n+1)^{2}$ and $r_{s}>5 p(k+1)+5 \beta$, we have

$$
\pi(\sigma)=\frac{z^{\prime}}{p^{r_{s}^{3}-r_{s}}}+\frac{l_{s}}{p^{r_{s}^{3}}}, \text { where } z^{\prime} \in \mathbb{Z} \text {. }
$$

Since $\left|l_{s}\right| \leqslant k+1<\frac{r_{s}}{p}<p^{r_{s}-1}$, we have the following: if $\pi(\sigma)=\frac{z^{\prime \prime}}{p^{\alpha}}, z^{\prime \prime} \in \mathbb{Z}$, is an irreducible fraction then $\alpha>r_{s}^{3}-r_{s}+1>5 \beta$. Hence $\pi(\sigma) \neq \pi(g)$ and $\sigma \neq g$.
c) Assume that $\sigma=l_{1} d_{2 r_{1}-1}+l_{2} d_{2 r_{2}-1}+\cdots+l_{s} d_{2 r_{s}-1}+l_{s+1} d_{2 r_{s+1}}+\cdots+l_{h} d_{2 r_{h}}$, where $0<s<h$ and

$$
\begin{gathered}
m<2 r_{1}-1<2 r_{2}-1<\cdots<2 r_{s}-1, \\
m \leqslant 2 r_{s+1}<2 r_{s+2}<\cdots<2 r_{h}, \quad l_{i} \in \mathbb{Z} \backslash\{0\}, \sum_{i=1}^{h}\left|l_{i}\right| \leqslant k+1 .
\end{gathered}
$$

Since the number of summands with different powers of p in $\widetilde{f}_{r_{s}}$ is $r_{s}+1>10 p(k+1)$ and $h-s<k+1$, by a simple pigeon-hole principle, there exists $r_{s}-2>i_{0}>2$ such that for every $1 \leqslant w \leqslant h-s$ we have

$$
\text { either } r_{s+w}<r_{s}^{3}-\left(i_{0}+2\right) r_{s} \text { or } r_{s+w}>r_{s}^{3}-\left(i_{0}-1\right) r_{s}
$$

The set of all w such that $r_{s+w}<r_{s}^{3}-\left(i_{0}+2\right) r_{s}$ we denote by K (it can be empty or have the form $\{1, \ldots, a\}$ for some $1 \leqslant a \leqslant h-s)$. Set $L=\{1, \ldots, h-s\} \backslash K$. Thus

$$
\begin{gathered}
\sigma=\left(l_{1} e_{r_{1}(\operatorname{modq})}+\cdots+l_{s} e_{r_{s}(\bmod \mathrm{q})}\right)+l_{1} \widetilde{f}_{r_{1}}+\cdots+l_{s-1} \widetilde{f}_{r_{s-1}}+\sum_{w \in K} l_{s+w} d_{2 r_{s+w}}+\frac{l_{s}}{p^{r_{s}^{3}-r_{s}^{2}}}+\cdots+ \\
\\
+\frac{l_{s}}{p^{r_{s}^{3}-\left(i_{0}+2\right) r_{s}}}+\frac{l_{s}}{p^{r_{s}^{3}-\left(i_{0}+1\right) r_{s}}}+\frac{l_{s}}{p^{r_{s}^{3}-i_{0} r_{s}}}+\frac{l_{s}}{p^{r_{s}^{3}-\left(i_{0}-1\right) r_{s}}}+\cdots+\frac{l_{s}}{p^{r_{s}^{3}}}+\sum_{w \in L} l_{s+w} d_{2 r_{s+w}} .
\end{gathered}
$$

The elements in the lines 1,2 and 4 we denote by σ_{1}, σ_{2} and σ_{4} respectively. Since $n^{3}<$ $(n+1)^{3}-(n+1)^{2}$ and $r_{s}>\beta$, the projection on $\mathbb{Z}\left(p^{\infty}\right)$ of every summand in lines 1 and 2 has the form $\frac{\delta}{p^{\gamma}}$, with $\gamma \leqslant r_{s}^{3}-\left(i_{0}+2\right) r_{s}$ and $\delta \in \mathbb{Z}$. Thus,

$$
\pi\left(\sigma_{1}+\sigma_{2}\right)=\frac{c}{p^{r_{s}^{3}-\left(i_{0}+2\right) r_{s}}}, \text { for some } c \in \mathbb{Z}
$$

Hence

$$
\begin{equation*}
\pi(\sigma)=\frac{c}{p_{s}^{r_{s}^{3}-\left(i_{0}+2\right) r_{s}}}+\frac{l_{s}}{p^{r_{s}^{3}-\left(i_{0}+1\right) r_{s}}}+\frac{l_{s}}{p^{r_{s}^{3}-i_{0} r_{s}}}+\pi\left(\sigma_{4}\right) \tag{9}
\end{equation*}
$$

Since $r_{s}>10 p(k+1)$, then $\frac{1}{1-1 / p^{r_{s}}}<\frac{1}{1-1 / p^{10}}<\frac{1}{1-1 / 2^{5}}=\frac{32}{31}$ and $2 k<p^{2 k}<p^{r_{s}}$. Thus, we can estimate $\pi\left(\sigma_{4}\right)$ as follows:

$$
\begin{gather*}
\left|\pi\left(\sigma_{4}\right)\right|=\left|\left(\frac{l_{s}}{p^{r_{s}^{3}-\left(i_{0}-1\right) r_{s}}}+\cdots+\frac{l_{s}}{p^{r_{s}^{3}}}\right)+\sum_{w \in L} l_{s+w} \frac{1}{p^{r_{s}+w}}\right|< \\
<\frac{\left|l_{s}\right|}{p^{r_{s}^{3}-\left(i_{0}-1\right) r_{s}}}\left(1+\frac{1}{p^{r_{s}}}+\frac{1}{p^{2 r_{s}}}+\ldots\right)+\frac{1}{p^{r_{s}^{3}-\left(i_{0}-1\right) r_{s}+1}} \sum_{w \in L}\left|l_{s+w}\right| \leqslant \frac{\left|l_{s}\right|}{p^{r_{s}^{3}-\left(i_{0}-1\right) r_{s}}} \times \\
\times \frac{1}{1-\frac{1}{p^{r_{s}}}}+\frac{k}{p^{r_{s}^{3}-\left(i_{0}-1\right) r_{s}+1}}<\frac{1}{p^{r_{s}^{3}-\left(i_{0}-1\right) r_{s}}}\left(k \frac{32}{31}+k \frac{1}{p}\right)<\frac{2 k}{p^{r_{s}^{3}-\left(i_{0}-1\right) r_{s}}}<\frac{1}{p^{r_{s}^{3}-i_{0} r_{s}}} \tag{10}
\end{gather*}
$$

We distinguish between two cases.
Case 1. $\pi\left(\sigma_{4}\right) \neq 0$. By (10) we have the following. If $\pi\left(\sigma_{4}\right)=\frac{\widetilde{c}}{p^{\alpha}}$ is an irreducible fraction, then $\alpha>r_{s}^{3}-i_{0} r_{s}>5 \beta$. Thus, by (9), we also have

$$
\pi(\sigma)=\frac{c^{\prime \prime}}{p^{\alpha}} \neq 0, \text { where } c^{\prime \prime} \in \mathbb{Z} \text { and }\left(c^{\prime \prime}, p\right)=1
$$

Since $\pi(g) \in\left\langle\frac{1}{p^{\beta}}\right\rangle$ and $\alpha>5 \beta$, we have $\pi(\sigma) \neq \pi(g)$ and $\sigma \neq g$.
Case 2. $\pi\left(\sigma_{4}\right)=0$. Let $l_{s}=p^{\psi} \cdot l_{s}^{\prime}$, where $\left(p, l_{s}^{\prime}\right)=1$ and $\psi<k<r_{s}$. Thus, by (9),

$$
\pi(\sigma)=\frac{c}{p^{r_{s}^{3}-\left(i_{0}+2\right) r_{s}}}+\frac{l_{s}}{p^{r_{s}^{3}-\left(i_{0}+1\right) r_{s}}}+\frac{l_{s}}{p^{r_{s}^{3}-i_{0} r_{s}}}=\frac{c^{\prime \prime}}{p^{r_{s}^{3}-i_{0} r_{s}-\psi}},
$$

where $c^{\prime \prime} \in \mathbb{Z}$ and $\left(c^{\prime \prime}, p\right)=1$. Since $r_{s}^{3}-i_{0} r_{s}-\psi>r_{s}^{3}-\left(i_{0}+1\right) r_{s}>5 \beta$, we have $\pi(\sigma) \neq 0$ and $\pi(\sigma) \neq \pi(g)$. Thus $\sigma \neq g$.

Put $S_{0}=0$ and $S_{n}=1+2+\cdots+n$ for $n \in \mathbb{N}$.
Lemma 6. Let q be an integer with $q \geqslant 2$. Then $\left(S_{n-1}+k\right) q+i \neq\left(S_{m-1}+l\right) q+j$ for every $m, n \geqslant 1,0 \leqslant i, j<q, 1 \leqslant k \leqslant n$ and $1 \leqslant l \leqslant m$ such that $(n, i, k) \neq(m, j, l)$.

Proof. We have three cases:
(1) The case $n \neq m$. We may assume that $n \leqslant m-1$. Then for every $0 \leqslant i, j<q$ and $1 \leqslant k \leqslant n$ we have

$$
\left(S_{n-1}+k\right) q+i \leqslant S_{n} q+(q-1)=\left(S_{n}+1\right) q-1<\left(S_{m-1}+1\right) q+j .
$$

So $\left(S_{n-1}+k\right) q+i \neq\left(S_{m-1}+l\right) q+j$ for every $0 \leqslant i, j<q, 1 \leqslant k \leqslant n$ and $1 \leqslant l \leqslant m$.
(2) The case $n=m$ and $i \neq j$. It is clear that

$$
\left(S_{n-1}+k\right) q+i \neq\left(S_{n-1}+l\right) q+j \text { for every } 1 \leqslant k, l \leqslant n
$$

(3) The case $n=m, i=j$ and $k \neq l$. It is clear that $\left(S_{n-1}+k\right) q+i \neq\left(S_{n-1}+l\right) q+i$.

As usual, $o(g)$ denotes the order of an element g of an Abelian group G.
In the following lemma we modify the construction of [15, Example 5] (or [16, Example 2.6.2]).

Lemma 7. Let $H=\left\langle e_{0}\right\rangle \oplus \cdots \oplus\left\langle e_{q-1}\right\rangle$ and $G=H \oplus \bigoplus_{i=q}^{\infty}\left\langle e_{i}\right\rangle=\bigoplus_{i=0}^{\infty}\left\langle e_{i}\right\rangle$, where $u_{i}:=$ $o\left(e_{i}\right)<\infty$ for every $i \geqslant 0$. Define a sequence $\mathbf{d}=\left\{d_{n}\right\}_{n \geqslant 2 q-1}$ as follows. For even indices we set
$d_{2 q}=e_{q}, \quad d_{2(q+1)}=2 e_{q}, \ldots, d_{2\left(q+u_{q}-2\right)}=\left(u_{q}-1\right) e_{q}, \quad d_{2\left(q+u_{q}-1\right)}=e_{q+1}, d_{2\left(q+u_{q}\right)}=2 e_{q+1}, \ldots$
For odd indices and for $0 \leqslant i<q$ and $n \geqslant 1$, we define

$$
d_{2(n q+i)-1}=e_{i}+e_{\left(S_{n-1}+1\right) q+i}+e_{\left(S_{n-1}+2\right) q+i}+\cdots+e_{S_{n} q+i} .
$$

Assume that one of the following two conditions holds:
a) there exists an integer $j_{0} \geqslant 0$ such that $u_{j}=u_{j_{0}}$ for all integers $j \geq j_{0}$ and $u_{j_{0}}$ is divided by every u_{0}, \ldots, u_{q-1}, or b) $u_{n} \rightarrow \infty$.
Then $\mathbf{d}=\left\{d_{n}\right\}$ is a T-sequence in G.
Proof. Let $k \geqslant 0$ be an integer and $g \in G$ with $g \neq 0$. By Theorem 6, we have to show that there is $m \in \mathbb{N}$ such that $g \notin A(k, m)$.

Step 1. By construction, $d_{2 n}=\lambda(n) e_{\mu(n)}$, where $1 \leqslant \lambda(n)<o\left(e_{\mu(n)}\right)$ and $\mu(n) \rightarrow \infty$ at $n \rightarrow \infty$. Since also $\left(S_{n-1}+1\right) q+i \rightarrow \infty$ at $n \rightarrow \infty$, we have the following: for every $j \geqslant q$ there exists $m \in \mathbb{N}$ such that $A(k, m) \subset H \oplus \bigoplus_{i=j}^{\infty}\left\langle e_{i}\right\rangle$. Thus,

$$
\bigcap_{m=1}^{\infty} A(k, m) \subset \bigcap_{j \geqslant q}\left(H \oplus \bigoplus_{i=j}^{\infty}\left\langle e_{i}\right\rangle\right)=H .
$$

So, the condition of the Protasov-Zelenyuk criterion holds for every $g \notin H$. (Note that a similar inclusion was proved in [11, Proposition 3.3] for another special case of T-sequence.)

By Step 1, it remains to check the Protasov-Zelenyuk criterion only for non-zero elements of H. Thus, in what follows, we assume that $g \in H$ and $g \neq 0$.

Note also that the summands of all the elements $d_{2(n q+i)-1}-e_{i}$ are independent, where $0 \leqslant i<q$ and $n \geqslant 1$. Indeed, this follows from Lemma 6 and the independence of the sequence $\left\{e_{n}\right\}$.

Step 2. Let $g \in A(k, 2 m)$ for some natural m. Then g has the following representation

$$
\begin{equation*}
g=l_{1} d_{2 r_{1}-1}+l_{2} d_{2 r_{2}-1}+\cdots+l_{s} d_{2 r_{s}-1}+l_{s+1} d_{2 r_{s+1}}+l_{s+2} d_{2 r_{s+2}}+\cdots+l_{h} d_{2 r_{h}}, \tag{11}
\end{equation*}
$$

where all summands are nonzero, $\sum_{i=1}^{h}\left|l_{i}\right| \leqslant k+1,0<s \leqslant h$ (by the construction of d) and

$$
2 m<2 r_{1}-1<2 r_{2}-1<\cdots<2 r_{s}-1, \quad 2 m \leqslant 2 r_{s+1}<2 r_{s+2}<\cdots<2 r_{h}
$$

Since all the summands of all the elements $d_{2(n q+i)-1}-e_{i}$ are independent and since $g \in H$, by the construction of the elements $d_{2 n}$ and (11), there is a subset Ω of the set $\left\{s+1, \ldots, r_{h}\right\}$ such that

$$
\begin{equation*}
l_{s} d_{2 r_{s}-1}+\sum_{w \in \Omega} l_{w} d_{2 r_{w}} \in H \tag{12}
\end{equation*}
$$

Step 3. By Step 2, to prove the lemma it is enough to find m_{0} such that (12) does not hold. We consider two cases a) and b) separately.

Assume that a) holds. Set $m_{0}=4 q\left(j_{0}+1\right)(k+1)$. Then $d_{2 r_{s}-1}-e_{r_{s}(\bmod q)}$ contains exactly

$$
t=\frac{1}{q}\left(r_{s}-r_{s}(\bmod q)\right)>\frac{1}{q}\left(m_{0}-q\right) \geqslant 4 k+3
$$

independent summands of the form e_{j} with $j \geqslant\left(\frac{t(t-1)}{2}+1\right)>m_{0}>j_{0}$. Since $l_{s} d_{2 r_{s}-1} \neq 0$ and $u_{j_{0}}$ is divided by every u_{0}, \ldots, u_{q-1}, we may assume that l_{s} is not divided by $u_{j_{0}}$. So, $l_{s} d_{2 r_{s}-1}$ contains at least $4 k+3$ non-zero independent summands of the form $l_{s} e_{j}$ with $j>j_{0}$.

Since $|\Omega| \leqslant h-s \leqslant k$ and $l_{w} d_{2 r_{w}}$ has the form $a_{v} e_{v}$, the conclusion of (12) does not hold. Thus, $g \notin A\left(k, 2 m_{0}\right)$.

Assume that b) holds. Choose $j_{0}>q$ such that $u_{j}>2(k+1)$ for every $j>j_{0}$. Set $m_{0}=4 j_{0}(q+1)(k+1)$. Then $d_{2 r_{s}-1}-e_{r_{s}(\bmod q)}$ contains at least $\frac{1}{q}\left(r_{s}-r_{s}(\bmod q)\right)>\frac{1}{q}\left(m_{0}-q\right)>$ $4 j_{0}(k+1)$ summands that are multiples of e_{j}. So, since $\left|l_{s}\right| \leqslant k+1, l_{s} d_{2 r_{s}-1}$ contains at least $3(k+1)$ non-zero independent summands of the form $l_{s} e_{j}$ with $j>j_{0}$.

Since $|\Omega| \leqslant h-s \leqslant k$ and $l_{w} d_{2 r_{w}}$ has the form $a_{v} e_{v}$, the conclusion of (12) does not hold. Thus, $g \notin A\left(k, 2 m_{0}\right)$.
4. Proofs of Theorems 3, 4 and 5. Following [3], we say that a sequence $\mathbf{u}=\left\{u_{n}\right\}$ is a $T B$-sequence in a group G if there is a precompact Hausdorff group topology on G in which $u_{n} \rightarrow 0$.

Proof of Theorem 1. Let G be an infinite Abelian group. It is known ([6]) that G admits a non-trivial $T B$-sequence \mathbf{u}. As it was noted in [8], a sequence \mathbf{u} is a $T B$-sequence if and only if it is a T-sequence and (G, \mathbf{u}) is maximally almost periodic. So $\mathbf{n}(G, \mathbf{u})=0$. Thus, G admits a complete non-discrete Hausdorff group topology with trivial von Neumann radical.

Let X be an Abelian topological group and $\mathbf{u}=\left\{u_{n}\right\}$ a sequence of elements of X^{\wedge}. Following D. Dikranjan, C. Milan and A. Tonolo ([7]), we denote by $s_{\mathbf{u}}(X)$ the set of all $x \in X$ such that $\left(u_{n}, x\right) \rightarrow 1$.

A proof of the following lemma can be found, for example, in [16, Example 2.6.3].
Lemma 8. Let $d_{2 n}=\frac{1}{p^{n}} \in \mathbb{Z}\left(p^{\infty}\right)$ and $\widetilde{\mathbf{d}}=\left\{d_{2 n}\right\}$. Then $x \in s_{\widetilde{\mathbf{d}}}\left(\Delta_{p}\right)$ if and only if there exists $m=m(x) \in \mathbb{Z}$ such that

$$
\begin{equation*}
(\lambda, x)=\exp (2 \pi i m \lambda) \text { for all } \lambda \in \mathbb{Z}\left(p^{\infty}\right) \tag{13}
\end{equation*}
$$

In other words, $x \in s_{\widetilde{\mathbf{d}}}\left(\Delta_{p}\right)$ if and only if $x=m \mathbf{1}$ for some $m \in \mathbb{Z}$. In particular, $\mathrm{Cl}\left(s_{\widetilde{\mathbf{d}}}\left(\mathbb{Z}\left(p^{\infty}\right)\right)\right)=\Delta_{p}$.

The following theorem is the algebraic part of [8, Theorem 4]. It shall be used to compute von Neumann kernels.

Theorem 7. If $\mathbf{d}=\left\{d_{n}\right\}$ is a T-sequence of an Abelian group G then $\mathbf{n}(G, \mathbf{d})=s_{\mathbf{d}}\left(\left(G_{d}\right)^{\wedge}\right)^{\perp}$ algebraically.

Another ingredient of the proof is the following reduction principle.
Lemma 9. Let H be a subgroup of an Abelian group G. If there exists a subgroup G^{\prime} of G containing H such that $H \in \mathcal{N} \mathcal{R}\left(G^{\prime}\right)$ (or $H \in \mathcal{N} \mathcal{R C}\left(G^{\prime}\right)$) then $H \in \mathcal{N} \mathcal{R}(G)$ (respectively, $H \in \mathcal{N} \mathcal{R C}(G))$.

Proof. Since $H \in \mathcal{N} \mathcal{R}\left(G^{\prime}\right)$, there exists a Hausdorff group topology τ^{\prime} on G^{\prime} such that $H=\mathbf{n}\left(G^{\prime}, \tau^{\prime}\right)$. Furthermore, if $H \in \mathcal{N} \mathcal{R C}\left(G^{\prime}\right)$ then τ^{\prime} can be chosen to be complete. Let τ be the group topology on G such that $G^{\prime} \in \tau$ and $\left(G^{\prime}, \tau^{\prime}\right)$ is a subspace of (G, τ). We note that τ is complete whenever τ^{\prime} is. Since $\left(G^{\prime}, \tau^{\prime}\right)$ is an open subgroup of (G, τ), one has $\mathbf{n}\left(G^{\prime}, \tau^{\prime}\right)=\mathbf{n}(G, \tau)$ (see also [8, Lemma 4] for a more general statement). This proves that $H=\mathbf{n}(G, \tau)$.

Proof of Theorem 3. Our goal is to construct a T-sequence \mathbf{d} in G satisfying

$$
\begin{equation*}
s_{\mathbf{d}}\left(\left(G_{d}\right)^{\wedge}\right)^{\perp}=H \tag{14}
\end{equation*}
$$

Combining this with Theorem 7 , we obtain that $\mathbf{n}(G, \mathbf{d})=H$. Since (G, \mathbf{d}) is complete, this shows that $H \in \mathcal{N R} \mathcal{R C}(G)$.

The rest of the proof is split into the following four cases.
(1) H is infinite. (2) H is finite and G is not torsion. (3) H is finite, G is torsion but not reduced. (4) H is finite and G is both torsion and reduced.

Since H is finitely generated, it is a direct finite sum of cyclic groups.
(1) H is infinite. Then $H=\left\langle e_{0}\right\rangle \oplus\left\langle e_{1}\right\rangle \oplus \cdots \oplus\left\langle e_{q-1}\right\rangle$, where $\left\langle e_{0}\right\rangle \cong \mathbb{Z}$. Applying the reduction principle (Lemma 9), we may assume that $G=H$. Choose any prime p and let $\varepsilon_{n}=1$ for all $n \in \mathbb{N}$. Let $\mathbf{d}=\left\{d_{n}\right\}$ be the T-sequence in G as in Lemma 4 . To establish (14), it suffices to prove that $s_{\mathbf{d}}\left(\left(G_{d}\right)^{\wedge}\right)=0$. Let

$$
\omega=x_{0}+x_{1}+\cdots+x_{q-1} \in\left(G_{d}\right)^{\wedge}, x_{i} \in\left\langle e_{i}\right\rangle^{\wedge}, \text { and }\left(d_{n}, \omega\right) \rightarrow 1 .
$$

Then $\left(d_{2 n}, \omega\right)=\left(p^{n} e_{0}, x_{0}\right) \rightarrow 1$. Hence $x_{0} \in \mathbb{Z}\left(p^{\infty}\right)$ (see [2] or [4, Remark 3.8]). If $x_{0}=\frac{\rho}{p^{\tau}}$, $\rho \in \mathbb{Z}, \tau>0$, then for $n=q s+i>\tau$ we have $\left(d_{2(q s+i)-1}, \omega\right)=\left(e_{i}, x_{i}\right)$ for every $0 \leqslant i<q$. So $\left(d_{2(q s+i)-1}, \omega\right) \rightarrow 1$ only if $x_{i}=0$ for every i. Hence $\omega=0$.
(2) H is finite and G is not torsion. Fix $e_{0} \in G$ such that $\left\langle e_{0}\right\rangle \cong \mathbb{Z}$. Since H is finite, $H \cap\left\langle e_{0}\right\rangle=0$. Let $H=\left\langle e_{1}\right\rangle \oplus \cdots \oplus\left\langle e_{q-1}\right\rangle$ be a direct decomposition of H. Then $G^{\prime}=$ $\left\langle e_{0}\right\rangle \oplus\left\langle e_{1}\right\rangle \oplus \cdots \oplus\left\langle e_{q-1}\right\rangle \cong \mathbb{Z} \oplus H$ is a subgroup of G containing H. By Lemma 9 , we may assume that $G=G^{\prime}$.

Choose any prime p and set $\varepsilon_{n}=1$ if $n(\bmod q)>0$ and $\varepsilon_{n}=0$ if $n(\operatorname{modq})=0$. Let $\mathbf{d}=\left\{d_{n}\right\}$ be the T-sequence in G as in Lemma 4. To establish (14), it suffices to show that $\mathrm{Cl}\left(s_{\mathbf{d}}\left(G_{d}^{\wedge}\right)\right)=\mathbb{Z}^{\wedge}=\mathbb{T}$. Let

$$
\omega=x_{0}+x_{1}+\cdots+x_{q-1} \in\left(G_{d}\right)^{\wedge}, x_{i} \in\left\langle e_{i}\right\rangle^{\wedge}, \text { and }\left(d_{n}, \omega\right) \rightarrow 1
$$

Then $\left(d_{2 n}, \omega\right)=\left(p^{n} e_{0}, x_{0}\right) \rightarrow 1$. Hence $x_{0} \in \mathbb{Z}\left(p^{\infty}\right)$ (see [2] or [4, Remark 3.8]). Let $x_{0}=$ $\frac{\rho}{p^{\tau}}, \rho \in \mathbb{Z}, \tau>0$. Then for any $n=q s+i>\tau$ we have $\left(d_{2 q s-1}, \omega\right)=1$ if $i=0$, and $\left(d_{2(q s+i)-1}, \omega\right)=\left(e_{i}, x_{i}\right)$ if $0<i<q$. So $\left(d_{2 n-1}, \omega\right) \rightarrow 1$ only if $x_{i}=0$ for every $0<i<q$. Thus $\omega=x_{0}$, where $x_{0} \in \mathbb{Z}\left(p^{\infty}\right) \subset \mathbb{T}$. So $s_{\mathbf{d}}\left(G_{d}^{\wedge}\right) \subseteq \mathbb{Z}\left(p^{\infty}\right)$. Let us prove the converse inclusion. Let $\omega=x_{0}=\frac{\rho}{p^{\tau}} \in \mathbb{Z}\left(p^{\infty}\right), \rho \in \mathbb{Z}, \tau>0$. By the definition of d_{m} we have

$$
\left(d_{2 n}, x_{0}\right)=\exp \left\{2 \pi i \frac{p^{n} \rho}{p^{\tau}}\right\},\left(d_{2 n-1}, x_{0}\right)=\exp \left\{2 \pi i \frac{f_{n} \rho}{p^{\tau}}\right\} .
$$

Thus, $\left(d_{m}, x_{0}\right)=1$ for every $m>2 \tau$ and hence $s_{\mathbf{d}}\left(G_{d}^{\wedge}\right) \supseteq \mathbb{Z}\left(p^{\infty}\right)$.
Hence $s_{\mathbf{d}}\left(G_{d}^{\wedge}\right)=\mathbb{Z}\left(p^{\infty}\right)$ and $\mathrm{Cl}\left(s_{\mathbf{d}}\left(G_{d}^{\wedge}\right)\right)=\mathbb{T}$.
(3) H is finite, G is torsion but not reduced. Then G contains a subgroup isomorphic to $\mathbb{Z}\left(p^{\infty}\right)$ for some prime p. By Lemma 9 , we may assume that $G \cong \mathbb{Z}\left(p^{\infty}\right)+H$. Let $H=$ $\left\langle e_{0}\right\rangle \oplus \cdots \oplus\left\langle e_{q-1}\right\rangle$ be a direct decomposition of H. Let $\mathbf{d}=\left\{d_{n}\right\}$ be the T-sequence in G as in Lemma 5. To establish (14), it suffices to prove that $H^{\perp}=\mathrm{Cl}\left(s_{\mathbf{d}}\left(\left(G_{d}\right)^{\wedge}\right)\right)$.

Let us prove first that $s_{\mathbf{d}}\left(\left(G_{d}\right)^{\wedge}\right) \subseteq H^{\perp}$. We use the notations from Lemma 3. Assume that

$$
\omega=\mathbf{x}_{0}+y \in s_{\mathbf{d}}\left(\left(G_{d}\right)^{\wedge}\right), \text { where } \mathbf{x}_{0} \in \Delta_{p}, y \in H_{1}^{\wedge} .
$$

Then $\left(d_{2 n}, \omega\right)=\left(d_{2 n}, \mathbf{x}_{0}\right) \rightarrow 1$. By (13), $\mathbf{x}_{0}=m \mathbf{1}$ for some $m \in \mathbb{Z}$ and $\left(\lambda, \mathbf{x}_{0}\right)=\exp (2 \pi i m \lambda)$, $\forall \lambda \in \mathbb{Z}\left(p^{\infty}\right)$. In particular, $\left(\widetilde{f}_{n}, \mathbf{x}_{0}\right)=\exp \left(2 \pi i m \widetilde{f}_{n}\right)$ for every $n \geqslant 1$. By (8), we obtain that $\left(\widetilde{f}_{n}, \mathbf{x}_{0}\right) \rightarrow 1$. So, for every $0 \leqslant i<q$, we have $(s \rightarrow \infty)$

$$
\left(d_{2(s q+i)-1}, \omega\right)=\left(\tilde{f}_{s q}+e_{i}, \omega\right)=\left(\widetilde{f}_{s q}, \mathbf{x}_{0}\right) \cdot\left(e_{i}, \omega\right) \rightarrow\left(e_{i}, \omega\right)=1
$$

So $\omega \in\left\langle e_{i}\right\rangle^{\perp}$ for every $0 \leqslant i<q$. Hence $\omega \in H^{\perp}$.
Let us show now the reverse inclusion $H^{\perp} \subseteq \mathrm{Cl}\left(s_{\mathbf{d}}\left(\left(G_{d}\right)^{\wedge}\right)\right)$. By Lemma 3, it is enough to prove that $\left\{S_{0} \cup\left\langle p^{k} 1\right\rangle\right\} \subset s_{\mathbf{d}}\left(\left(G_{d}\right)^{\wedge}\right)$. Let $\omega \in S_{0}$. Then, by the construction of S_{0}, for $\omega=\mathbf{x}_{0}+y$ and $\mathbf{x}_{0}=\left(x_{0}, \ldots, x_{k-1}, 0, \ldots\right)=m \cdot \mathbf{1}$ we have

$$
\begin{gathered}
\left(d_{2 n}, \omega\right)=\exp \left\{2 \pi i \frac{1}{p^{n}}\left(x_{0}+\cdots+x_{k-1} p^{k-1}\right)\right\} \rightarrow 1, \text { at } n \rightarrow \infty \\
\left(d_{2(s q+i)-1}, \omega\right)=\left(\widetilde{f}_{s q}, \mathbf{x}_{0}\right) \cdot\left(e_{i}, \omega\right)=\left(\widetilde{f}_{s q}, \mathbf{x}_{0}\right)=\exp \left\{2 \pi i \widetilde{f}_{s q} m\right\} \rightarrow 1 .
\end{gathered}
$$

Hence $S_{0} \subset s_{\mathbf{d}}\left(\left(G_{d}\right)^{\wedge}\right)$. For $p^{k} \mathbf{1}$ we obtain

$$
\begin{gathered}
\left(d_{2 n}, p^{k} \mathbf{1}\right)=\exp \left\{2 \pi i \frac{1}{p^{n}} \cdot p^{k}\right\} \rightarrow 1, \text { at } n \rightarrow \infty \\
\left(d_{2(s q+i)-1}, p^{k} \mathbf{1}\right)=\left(\widetilde{f}_{s q}, p^{k} \mathbf{1}\right)=\exp \left\{2 \pi i \widetilde{f}_{s q} p^{k}\right\} \rightarrow 1
\end{gathered}
$$

Thus, $H^{\perp}=\operatorname{Cl}\left(s_{\mathbf{d}}\left(\left(G_{d}\right)^{\wedge}\right)\right)$.
(4) H is finite and G is both torsion and reduced. Since G is not bounded, G contains an independent sequence $\left\{b_{n}\right\}$ of elements such that $o\left(b_{n}\right) \rightarrow \infty$. Let $H=\left\langle e_{0}\right\rangle \oplus \cdots \oplus\left\langle e_{q-1}\right\rangle$ be a direct decomposition of H. Using q times Lemma 1, we can find $m \in \mathbb{N}$ such that the sequence $\left\{e_{0}, e_{1}, \ldots, e_{q-1}, b_{m}, b_{m+1}, \ldots\right\}$ is independent. Define $e_{q+k}=b_{m+k}$ for all integers $k \geq 0$. Clearly, $u_{i}:=o\left(e_{i}\right)<\infty$ for every $i \geqslant 0$ and $u_{i} \rightarrow \infty$. By Lemma 9 , we may assume that

$$
G=H \oplus \bigoplus_{i=q}^{\infty}\left\langle e_{i}\right\rangle=\bigoplus_{i=0}^{\infty}\left\langle e_{i}\right\rangle .
$$

Then $\left(G_{d}\right)^{\wedge}=\prod_{i=0}^{\infty}\left\langle e_{i}\right\rangle$.
Let $\mathbf{d}=\left\{d_{n}\right\}$ be the T-sequence in G as in Lemma 7. To establish (14), it suffices to prove that

$$
\begin{equation*}
\mathrm{Cl}\left(s_{\mathbf{d}}\left(\left(G_{d}\right)^{\wedge}\right)\right)=\prod_{i=q}^{\infty}\left\langle e_{i}\right\rangle \tag{15}
\end{equation*}
$$

We modify the proof of [11, Proposition 3.3]. Let $\omega=\left(a_{0}, a_{1}, \ldots\right) \in s_{\mathbf{d}}\left(\left(G_{d}\right)^{\wedge}\right)$. By definition, there exists $N \in \mathbb{N}$ such that $\left|1-\left(d_{2 n}, \omega\right)\right|<0.1, \forall n>N$. Thus, there is $N_{0}>$ N such that $\left|1-\left(j e_{l}, \omega\right)\right|=\left|1-\left(j e_{l}, a_{l}\right)\right|<0.1, \forall j=1, \ldots, u_{l}-1$, for every $l>N_{0}$. This means that $a_{l}=0$ for every $l>N_{0}$. So $\omega \in \bigoplus_{i=0}^{\infty}\left\langle e_{i}\right\rangle \subset\left(G_{d}\right)^{\wedge}$. Since $\left(d_{2(n q+i)-1}, \omega\right)$ $\rightarrow 1$ too and $\left(d_{2(n q+i)-1}, \omega\right)=\left(e_{i}, a_{i}\right)$ for all sufficiently large n, we obtain that $a_{i}=0$ for any $i=0, \ldots, q-1$. Thus $s_{\mathbf{d}}\left(\left(G_{d}\right)^{\wedge}\right) \subseteq \bigoplus_{i=q}^{\infty}\left\langle e_{i}\right\rangle$. The converse inclusion is trivial. Hence $s_{\mathbf{d}}\left(\left(G_{d}\right)^{\wedge}\right)=\bigoplus_{i=q}^{\infty}\left\langle e_{i}\right\rangle$ and it is dense in $\prod_{i=q}^{\infty}\left\langle e_{i}\right\rangle$. So, $\mathrm{Cl}\left(s_{\mathbf{d}}\left(\left(G_{d}\right)^{\wedge}\right)\right)=\prod_{i=q}^{\infty}\left\langle e_{i}\right\rangle$.

Proof of Theorem 4. Let us prove the implication (1) \Rightarrow (2). Assume that G contains a subgroup of the form $H^{(\omega)}$. Let $H=\left\langle e_{0}^{0}\right\rangle \oplus \cdots \oplus\left\langle e_{0}^{q}\right\rangle$ with $e_{0}^{i} \in G$. By our assumption, G contains a subgroup of the form $Y_{0} \oplus Y_{1} \oplus \cdots \oplus Y_{q}$, where

$$
Y_{j}=\bigoplus_{i=0}^{\infty}\left\langle e_{i}^{j}\right\rangle, 0 \leqslant j \leqslant q, e_{i}^{j} \in G
$$

and the order of e_{i}^{j} is equal to u_{j} for every $i \geqslant 0$. By the reduction principle (Lemma 9), we may assume that $G=Y_{0} \oplus Y_{1} \oplus \cdots \oplus Y_{q}$. Further, since the von Neumann radical of a product of topological groups is the product of their von Neumann radicals, it is enough to construct a Hausdorff group topology τ_{j} on Y_{j} such that $\mathbf{n}\left(Y_{j}, \tau_{j}\right)=\left\langle e_{0}^{j}\right\rangle$. So, we can restrict
ourselves to the case $H=\left\langle e_{0}\right\rangle$ and $G=H \oplus \bigoplus_{i=1}^{\infty}\left\langle e_{i}\right\rangle=\bigoplus_{i=0}^{\infty}\left\langle e_{i}\right\rangle$, where the order of e_{i} is equal to u for every $i \geqslant 0$.

Let $\mathbf{d}=\left\{d_{n}\right\}$ be the T-sequence in G as in Lemma 7. As in the proof of Theorem 3, we only need to show that equality (14) holds. To this end, it is enough to prove that $\operatorname{Cl}\left(s_{\mathbf{d}}\left(\left(G_{d}\right)^{\wedge}\right)\right)=\prod_{i=1}^{\infty}\left\langle e_{i}\right\rangle$. The proof of this equality is the same as the proof of equality (15) in item (4) of Theorem 3 (where one needs to take $q=1$).

Implication $(2) \Rightarrow(3)$ is trivial.
Let us prove implication (3) \Rightarrow (1). Let $H=\left\langle e_{1}\right\rangle \oplus \cdots \oplus\left\langle e_{q}\right\rangle$. Assume that (1) fails. By Lemma 2, there exists $1 \leqslant i_{0} \leqslant q$ such that G does not contain a subgroup of the form $\left\langle e_{i_{0}}\right\rangle^{(\omega)}$. Set $n_{i_{0}}=o\left(e_{i_{0}}\right)$. Let $n_{i_{0}}=p_{1}^{k_{1}} \ldots p_{l}^{k_{l}}$ and $\exp G=p_{1}^{a_{1}} \ldots p_{l}^{a_{l}} \cdot p_{l+1}^{a_{l+1}} \ldots p_{t}^{a_{t}}$, where p_{1}, \ldots, p_{t} are distinct prime integers. For $1 \leqslant j \leqslant l$ we put $m_{j}=\exp G / p_{j}^{a_{j}-k_{j}+1}$. Set $\pi_{j}: G \rightarrow G, \pi_{j}(g)=m_{j} g$, and $G_{j}=\pi_{j}(G)$. Then $\pi_{j}\left(e_{i_{0}}\right) \neq 0$ for every $1 \leqslant j \leqslant l$.
(a) Let us prove that there exists $1 \leqslant j \leqslant l$ such that G_{j} is finite.

Assume for a contradiction that G_{j} is infinite for every j. Since $\exp G_{j}=p_{j}^{a_{j}-k_{j}+1}, G_{j}$ contains a subgroup of the form

$$
\bigoplus_{i=1}^{\infty}\left\langle\widetilde{b}_{i}\right\rangle, \text { where } \widetilde{b}_{i} \in G_{j} \text { and }\left\langle\widetilde{b}_{i}\right\rangle \cong \mathbb{Z}\left(p_{j}\right)
$$

Thus, for every $i \geqslant 1$ there exists an element $b_{i} \in G$ such that $o\left(b_{i}\right)=p_{j}^{k_{j}}$ and $\pi_{j}\left(b_{i}\right)=\widetilde{b}_{i}$. Indeed, if y is any element such that $\pi_{j}(y)=\widetilde{b}_{i}$, then we may put $b_{i}=c_{j} y$, where $c_{j}=$ $\exp G / p_{j}^{a_{j}}\left(\right.$ and $m_{j}=c_{j} \cdot p_{j}^{k_{j}-1}$).

Let us prove that the sequence $\left\{b_{i}\right\}$ is independent. Assuming the converse we obtain that

$$
\begin{equation*}
s_{1} b_{i_{1}}+s_{2} b_{i_{2}}+\cdots+s_{w} b_{i_{w}}=0 \text { and } s_{r} b_{i_{r}} \neq 0,1 \leqslant r \leqslant w . \tag{16}
\end{equation*}
$$

Let $s_{r}=p_{j}^{v_{r}} \cdot A_{r}$, where p and A_{r} are coprime. Set $v=\min \left\{v_{1}, \ldots, v_{w}\right\}$. By our choice of b_{i} we have $v<k_{j}$. Thus, if we multiply equality (16) by $c_{j} \cdot p_{j}^{k_{j}-v-1}$ then we obtain

$$
A_{1} p_{j}^{v_{1}-v} \widetilde{b}_{i_{1}}+A_{2} p_{j}^{v_{2}-v} \widetilde{b}_{i_{2}}+\cdots+A_{w} p_{j}^{v_{w}-v} \widetilde{b}_{i_{w}}=0
$$

Since there exists r such that $v_{r}=v$ and $A_{r} p_{j}^{v_{r}-v} \widetilde{b}_{i_{r}}=A_{r} \widetilde{b}_{i_{r}} \neq 0$, we obtain that the elements \widetilde{b}_{i} are dependent. Since the sequence $\left\{\widetilde{b}_{i}\right\}$ is independent, we obtain a contradiction.

Since the sequence $\left\{b_{i}\right\}$ is independent, G contains a subgroup of the form

$$
\bigoplus_{i=1}^{\infty}\left\langle b_{i}\right\rangle, \text { where }\left\langle b_{i}\right\rangle \cong \mathbb{Z}\left(p_{j}^{k_{j}}\right),
$$

for every $1 \leqslant j \leqslant l$. Since p_{1}, \ldots, p_{l} are coprime, G contains a subgroup of the form $\left\langle e_{i_{0}}\right\rangle^{(\omega)}$. This is a contradiction. Thus there exists $1 \leqslant j \leqslant l$ such that G_{j} is finite.
(b) Let us prove that there is no Hausdorff group topology τ such that $\mathbf{n}(G, \tau)=H$. (We repeat the arguments of D. Remus (see [5])).

Let τ be any Hausdorff group topology on G and let j be such that G_{j} is finite. Then $\operatorname{Ker}\left(\pi_{j}\right)$ is open and closed. So $\mathbf{n}(G, \tau) \subseteq \operatorname{Ker}\left(\pi_{j}\right)$. Since, $0 \neq \pi_{j}\left(e_{i_{0}}\right) \in H / \operatorname{Ker}\left(\pi_{j}\right)$, we obtain that $H \neq \mathbf{n}(G, \tau)$.

Proof of Theorem 5. (1) is equivalent to (2) by Corollary 1.
Let us prove that (2) yields (3). If G does not satisfy condition (3) then $\exp G<\infty$. Let $\exp G=p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{t}^{a_{t}}$, where p_{1}, \ldots, p_{t} are distinct prime integers. By Lemma 2, there
exists $1 \leqslant i_{0} \leqslant t$ such that G does not contain a subgroup of the form $\mathbb{Z}\left(p_{i_{0}}^{a_{i}}\right)^{(\omega)}$. Set $H=\left\langle e_{i_{0}}\right\rangle$, where $o\left(e_{i_{0}}\right)=p_{i_{0}}^{a_{i_{0}}}$. Then H is finite and, by Theorem 4, $H \notin \mathcal{N} \mathcal{R}(G)$. This is a contradiction. Thus, (2) yields (3).

Let us prove that (3) yields (1). If $\exp G=\infty$, the assertion follows from Theorem 3. If $\exp G<\infty$, the assertion follows from Theorem 4 .

Acknowledgement: I am deeply indebted to Professor Shakhmatov for numerous suggestions which essentially improve the exposition of the article. It is a pleasure to thank A. Leiderman.

REFERENCES

1. M. Ajtai, I. Havas, J. Komlós, Every group admits a bad topology, Stud. Pure Math., Memory of P. Turan, Basel-Boston, 1983, 21-34.
2. D.L. Armacost, The structure of locally compact Abelian groups, Monographs and Textbooks in Pure and Applied Mathematics, 68, Marcel Dekker, Inc., New York, 1981.
3. G. Barbieri, D. Dikranjan, C. Milan, H. Weber, Answer to Raczkowski's question on convergent sequences of integers, Topology Appl., 132 (2003), 89-101.
4. G. Barbieri, D. Dikranjan, C. Milan, H. Weber, Topological torsion related to some sequences of integers, Math. Nachr., 281 (2008), №7, 930-950.
5. W.W. Comfort, Problems on Topological Groups and Other Homogeneous Spaces, Open problems in topology, 314-347, North-Holland, 1990.
6. W.W. Comfort, S.U. Raczkowski, F. Trigos-Arrieta, Making group topologies with, and without, convergent sequences, Applied General Topology, 7 (2006), №1, 109-124.
7. D. Dikranjan, C. Milan, A. Tonolo, A characterization of the maximally almost periodic Abelian groups, J. Pure Appl. Algebra, 197 (2005), 23-41.
8. S.S. Gabriyelyan, On T-sequences and characterized subgroups, Topology Appl., 157 (2010), 2834-2843.
9. S.S. Gabriyelyan, Characterization of almost maximally almost-periodic groups, Topology Appl., 156 (2009), 2214-2219.
10. E. Hewitt, K.A. Ross, Abstract Harmonic Analysis, V.I, 2nd ed. Springer-Verlag, Berlin, 1979.
11. G. Lukács, Almost maximally almost-periodic group topologies determined by T-sequences, Topology Appl., 153 (2006), 2922-2932.
12. J. von Neumann, Almost periodic functions in a group, Trans. Amer. Math. Soc., 36 (1934), 445-492.
13. N. Noble, k-groups and duality, Trans. Amer. Math. Soc., 151 (1970), 551-561.
14. I.V. Protasov, Review of Ajtai, Havas and J. Komlós, Zentralblatt für Matematik, 535 (1983), 93.
15. I.V. Protasov, E.G. Zelenyuk, Topologies on abelian groups, Math. USSR Izv., 37 (1991), 445-460. Russian original: Izv. Akad. Nauk SSSR, 54 (1990), 1090-1107.
16. I.V. Protasov, E.G. Zelenyuk, Topologies on groups determined by sequences, Monograph Series, Math. Studies VNTL, Lviv, 1999.

Department of Mathematics, Ben-Gurion University of the Negev, Beer-Sheva, Israel saak@math.bgu.ac.il

