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Let G be an infinite Abelian group. We give a complete characterization of those finitely
generated subgroups of G which are the von Neumann radicals for some Hausdorff group
topologies on G. It is proved that every infinite finitely generated Abelian group admits
a complete Hausdorff minimally almost periodic group topology. The latter result resolves
a particular case of Comfort’s problem.

C. C. Габриелян. Конечно порожденные подгруппы абелевой группы G, являющиеся ее
радикалами фон Неймана // Мат. Студiї. – 2012. – Т.38, №2. – C.124–138.

В статье дается полная характеризация конечно порожденных подгрупп бесконечной
абелевой группы G, являющихся радикалами фон Неймана для хаусдорфовых топологий
на G. Доказано что каждая бесконечная конечно порожденная абелевая группа допускает
полную хаусдорфовую минимально почти периодическую топологию. Последний резуль-
тат частично решает проблему Комфорта.

1. Introduction. Let G be an Abelian group G. Recall that G is bounded if there exists
a positive integer n such that ng = 0 for every g ∈ G, and the minimal integer n with this
property is called the exponent of G denoted by exp(G). When G is not bounded, we write
exp(G) =∞ and say that G has infinite exponent .

For an Abelian topological group X, X∧ denotes the group of all continuous characters
on X endowed with the compact-open topology and

n(X) =
⋂
χ∈X∧

kerχ

denotes the von Neumann radical of X. The richness of the dual group X∧ is one of the
most important properties of X, and it is characterized by the von Neumann radical n(X).

Following J. von Neumann ([12]), a group X is called minimally almost periodic (MinAP)
if n(X) = X, and it is called maximally almost periodic if n(X) = 0.

The following proposition (proved in Section 3) is a simple corollary of the main result
of [6].

Theorem 1. Every infinite Abelian group admits a complete non-discrete Hausdorff group
topology with trivial von Neumann radical.
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A much deeper question is whether every infinite Abelian group admits a Hausdorff group
topology with a non-zero von Neumann radical. A positive answer to this question was given
by M. Ajtai, I. Havas and J. Komlós ([1]). E. G. Zelenyuk and I. V. Protasov ([15]) proved
that every infinite Abelian group G admits a complete Hausdorff group topology for which
characters do not separate points. I. V. Protasov ([14]) posed the question whether every
infinite Abelian group admits a minimally almost periodic group topology. A simple example
of a bounded group G which does not admit any Hausdorff group topology τ such that (G, τ)
is minimally almost periodic is given by D. Remus ([5]). This justifies the following problem.

Question (Comfort’s Problem 521 [5]). Does every Abelian group which is not of
bounded order admit a minimally almost periodic topological group topology? What about
the countable case?

Moreover, it was not known even whether every infinite finitely generated Abelian
group G admits a Hausdorff minimally almost periodic group topology. We answer this
question in the affirmative theorem.

Theorem 2. Every infinite finitely generated Abelian group G admits a complete Hausdorff
minimally almost periodic group topology.

Let G be an infinite Abelian group and H its infinite finitely generated subgroup. By
Theorem 2, there is a Hausdorff MinAP group topology τ ′ on H. Let τ be a group topology
on G such that H ∈ τ and τ |H = τ ′. Then the von Neumann radical of (G, τ) is H (see
Lemma 9 below). So, every infinite finitely generated subgroup of an Abelian group G can
be considered as the von Neumann radical for some Hausdorff group topology on G. Noting
that every finite group is finitely generated, it is natural to ask, for which finite subgroup H
of an infinite Abelian group G there is a Hausdorff group topology τ on G such that H is
the von Neumann radical of (G, τ).

Let G be an infinite Abelian group. We denote by NR(G) (by NRC(G)) the set of all
subgroupsH ofG for which there exists a (complete) non-discrete Hausdorff group topology τ
on G such that n(G, τ) = H. It is clear that NRC(G) ⊆ NR(G). Therefore, by Theorem 1,
{0} ∈ NRC(G), and, by [15], NRC(G) 6= {{0}}. The general question of describing the sets
NR(G) and NRC(G) was raised in [9].

The main goal of the paper is to describe all finitely generated subgroups of an infinite
Abelian group G which are contained in NR(G).

For an Abelian group G, the symbols FGS(G) and FS(G) denote the set of all finitely
generated subgroups and finite subgroups G, respectively.

Theorem 2 is an immediate consequence of the following theorem.

Theorem 3. Let G be an Abelian group that is not bounded. Then for every finitely
generated subgroup H of G there exists a complete Hausdorff group topology τ on G such
that H = n(G, τ), i.e., FGS(G) ⊆ NRC(G).

The case of bounded groups is more complicated. The direct sum of ω copies of an Abelian
group H we denote by H(ω).

Theorem 4. Let G be an infinite Abelian bounded group. Let H ∈ FS(G) = FGS(G).
Then the following statements are equivalent: 1) G contains a subgroup of the form H(ω);
2) H ∈ NRC(G); 3) H ∈ NR(G).



126 S. S. GABRIYELYAN

As an evident corollary of Theorems 3 and 4 we obtain the following result resolving [9,
Problem 3].

Corollary 1. Let G be an infinite Abelian group and H ∈ FGS(G). Then H ∈ NR(G) if
and only if H ∈ NRC(G), i.e.,
FS(G) ∩NR(G) = FS(G) ∩NRC(G), and FGS(G) ∩NR(G) = FGS(G) ∩NRC(G).

By Corollary 1, in all subsequent theorems and corollaries of this section only the (si-
mpler) option NR(G) is considered.

Also as a trivial corollary of Theorems 3 and 4 we obtain the main result of [9].

Corollary 2 ([9]). An Abelian group G admits a Hausdorff group topology with non-trivial
finite von Neumann radical if and only if it is not torsion free.

Proof. Clearly, if G admits a Hausdorff group topology with non-trivial von Neumann radical
it must contain a nonzero element of finite order. Conversely, since every finite subgroup is
finitely generated and since any infinite Abelian bounded group contains a subgroup of the
form Z(p)(ω) for some prime p, the corollary immediately follows from Theorems 3 and 4.

The following problem was posed in [9, Problem 6]: describe all infinite Abelian groups G
such that FS(G) ⊂ NR(G). (We note that this inclusion is strict since NR(G) contains
a countably infinite subgroup.) A solution to this problem is provided by the following
theorem.

Theorem 5. Let G be an infinite Abelian group. Then the following statements are equi-
valent: 1. FGS(G) ⊆ NR(G); 2. FS(G) ⊂ NR(G); 3. G satisfies one of the following
conditions: 1) expG = ∞; 2) expG = m is finite and G contains a subgroup of the
form Z(m)(ω).

We can reformulate Theorem 5 for bounded groups as follows. It is well known that a
bounded group G has the form G =

⊕
p∈M

⊕np
i=1 Z(pi)(ki,p), where M is a finite set of prime

numbers. Leading Ulm-Kaplansky invariants of G are the cardinal numbers knp,p, p ∈M .

Corollary 3. All finite subgroups H of an infinite bounded Abelian group G belong to
NR(G) if and only if all leading Ulm-Kaplansky invariants of G are infinite.

The article is organized as follows. In Section 2 we prove some auxiliary lemmas that
will be used to prove the main results. In Section 3 special T -sequences are constructed for
some Abelian groups. These T -sequences are used to define the topologies with the desired
property in Theorem 3. In the last Section 4 we prove Theorems 3, 4 and 5.

2. Auxiliary lemmas. Let us recall that a subset X of an Abelian group G is called
independent provided that for every finite sequence x1, . . . , xn of pairwise distinct elements
of X and each sequence m1, . . . ,mn of integer numbers, if m1x1 + · · · + mnxm = 0 then
mixi = 0 for all i ∈ {1, . . . , n}.

Lemma 1. Let {bn}n∈ω be an independent sequence of an Abelian group G. Then for every
nonzero element g of G there is n0 such that the set {g, bn0 , bn0+1, . . . } is independent.
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Proof. Set H =
⊕

n∈ω〈bn〉. If the intersection H ∩ 〈g〉 is trivial then one can take n0 = 0.
Otherwise, H ∩ 〈g〉 is a subgroup of 〈g〉, hence H ∩ 〈g〉 = 〈mg〉 6= 0 for some m ∈ N.
The support of mg ∈

⊕
n〈bn〉 is finite, so there exists k such that mg ∈

⊕k
n=0〈bn〉. Thus,

H∩〈g〉 = 〈mg〉 ⊆
⊕k

n=0〈bn〉. Therefore, 〈g〉∩
⊕∞

n=k+1〈bn〉 = 0. Putting n0 = k+1 we obtain
that the set {g, bn0 , bn0+1, . . . } is independent.

As usual, for an element g of an Abelian group G, we denote by 〈g〉 the subgroup of G
generated by g.

For the proof of Theorem 4 we need the following lemma.

Lemma 2. Let G be an infinite Abelian group and e1, . . . , eq ∈ G. Then the following
assertions are equivalent:

1. G contains a subgroup of the form 〈e1〉(ω) ⊕ 〈e2〉(ω) ⊕ · · · ⊕ 〈eq〉(ω);

2. G contains a subgroup of the form 〈ei〉(ω) for every 1 6 i 6 q.

Proof. We need to prove only the implication (2)⇒ (1). It is easy to see that we can restrict
ourselves to the case when ei has a finite order ni for every 1 6 i 6 q.

Let pb11 . . . pbll be the prime decomposition of the least common multiple of n1, . . . , nq.
Since any pbjj is a divisor of some nk(j), by hypothesis, G contains a subgroup of the form

∞⊕
n=1

Hj
n, where Hj

n
∼= Z(p

bj
j ).

Thus, G contains the following subgroup
q⊕
i=1

(
∞⊕
n=1

H1
nq+i ⊕

∞⊕
n=1

H2
nq+i ⊕ · · · ⊕

∞⊕
n=1

H l
nq+i

)
.

Evidently, the group
⊕∞

n=1 H
1
nq+i ⊕

⊕∞
n=1 H

2
nq+i ⊕ · · · ⊕

⊕∞
n=1 H

l
nq+i contains a subgroup of

the form 〈ei〉(ω) for every 1 6 i 6 q.

Let us consider the group Z(p∞) with discrete topology. Then Z(p∞)∧ = ∆p is the
compact group of p-adic integers which elements are denoted by x = (ai), 0 6 ai < p, and
the identity is 1 = (1, 0, 0, . . . ). By [10, Remark 10.6], 〈1〉 is dense in ∆p and, by [10, 25.2],
(λ,1) = exp{2πi · λ} for every λ ∈ Z(p∞). Following [10, 10.4], we denote by Λk, k > 1,
the set of all x = (x0, . . . , xk−1, xk, . . . ) ∈ ∆p such that x0 = · · · = xk−1 = 0 and put
Λ0 = ∆p. Note that Λk is just pk∆p.

A group G with the discrete topology is denoted by Gd. If H is a subgroup of (Gd)
∧ then

H⊥ := {g ∈ G : (g, h) = 1 ∀h ∈ H}. We use the following lemma to prove Theorem 3.

Lemma 3. Let G = Z(p∞) + H, where H is a finite group, endowed with the discrete
topology. Let H1 be a finite group such that G = Z(p∞) ⊕H1. Then there exist k > 0 and
a finite set S0 ⊂ 〈1〉 ⊕ H∧1 such that H⊥ = 〈S0〉 + Λk. In particular, the finitely generated
subgroup 〈S0 ∪ {pk1}〉 is dense in H⊥.

Proof. Let H = 〈e1〉 ⊕ · · · ⊕ 〈el〉 ⊕ 〈el+1〉 ⊕ · · · ⊕ 〈eq〉, where o(ei) = pwi for 1 6 i 6 l and
o(ei) = pwii , pi 6= p, for l < i 6 q. Then for some integer t we have

H1 = 〈g1〉 ⊕ · · · ⊕ 〈gt〉 ⊕ 〈el+1〉 ⊕ · · · ⊕ 〈eq〉,

where o(gi) = pri for some natural number ri and ei = ai0g0 + ai1g1 + · · · + aitgt, 1 6 i 6 l,
where g0 = 1

pr0
∈ Z(p∞), and 0 6 aij < pri for every 0 6 j 6 t. Since H1 is finite, we will
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identify H1 with H∧1 . Let ω = x + λ1g1 + · · ·+ λtgt + λt+1el+1 + · · ·+ λt+q−leq ∈ G∧, where
x = (x0, x1, . . . ) ∈ ∆p, 0 6 λi < pri for 1 6 i 6 t and 0 6 λt+j < p

wl+j
l+j for 1 6 j 6 q − l. By

definition, ω ∈ H⊥ iff (ω, ei) = 1 for every 1 6 i 6 q. In particular, for every 1 6 j 6 q − l,

(ω, el+j) =
λt+j

p
wl+j
l+j

= 0(mod 1).

Since λt+j < p
wl+j
l+j , we have λt+j = 0 for every 1 6 j 6 q− l. So, ω ∈ H⊥ if and only if it has

the form ω = x + λ1g1 + · · · + λtgt and (ω, ei) = 1,∀1 6 i 6 l. Thus, by [10, 25.2], ω ∈ H⊥
if and only if λt+j = 0, for every 1 6 j 6 q − l, and for any 1 6 i 6 l, (mod 1)

ai0
pr0

(
x0 + x1p+ · · ·+ xr0−1p

r0−1
)

+
λ1a

i
1

pr1
+ · · ·+ λta

i
t

prt
= 0. (1)

Denote by S0 the set of all ω ∈ H⊥ which have the form

ω = x + λ1g1 + · · ·+ λtgt, x = (x0, x1, . . . , xr0−1, 0 . . . ),

where x and λ1, . . . , λt satisfy (1). By definition, S0 ⊂ H⊥∩(〈1〉 ⊕H∧1 ) and for every ω ∈ H⊥
there is ω0 ∈ S0 such that ω − ω0 = (0, . . . , 0r0−1, xr0 , xr0+1, . . . ) ∈ Λr0 . Set k = r0. Then
H⊥ ⊆ 〈S0〉 + Λk. The converse inclusion follows from (1). By [10, Remark 10.6], 〈pk1〉 is
dense in Λk. So, 〈S0 ∪ {pk1}〉 is dense in H⊥.

3. Construction of T -sequences. In this section we construct T -sequences which will be
needed for the proofs of the main results.

Following E. G. Zelenyuk and I. V. Protasov ([15], [16]), we say that a sequence d = {dn}
in a group G is a T -sequence if there is a Hausdorff group topology on G with respect to
which dn converges to zero. The group G equipped with the finest group topology with this
property is denoted by (G,d). We note also that, by [16, Theorem 2.3.11], the group (G,d)
is complete.

For a sequence {dn} and k,m ∈ N, one defines ([15])

A(k,m) = {n1dr1 + · · ·+ nsdrs : m 6 r1 < · · · < rs,

n1, n2, . . . , ns ∈ Z \ {0},
s∑
i=1

|ni| 6 k + 1} ∪ {0}.

In this section we make extensive use of the following Protasov-Zelenyuk’s criterion.

Theorem 6 ([15]). A sequence {dn} of elements of an Abelian group G is a T -sequence if
and only if, for every integer k > 0 and for each element g ∈ G with g 6= 0, there is an integer
m such that g 6∈ A(k,m).

For a prime p and n ∈ N we set fn = pn
3−n2

+ · · · + pn
3−2n + pn

3−n + pn
3 ∈ Z. Then

fn < 2pn
3
6 pn

3+1. For 0 < r1 < r2 < · · · < rv and integers l1, l2, . . . , lv such that
∑v

i=1 |li| 6
k + 1, we have

|l1fr1 + l2fr2 + · · ·+ lvfrv | < (k + 1)frv 6 (k + 1)pr
3
v+1. (2)

Lemmas 4 and 5 are slight modifications of items (1) and (2) in the proof of [9, Theorem 1].
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Lemma 4. Let G = 〈e0〉 ⊕ 〈e1〉 ⊕ · · · ⊕ 〈eq−1〉, where 〈e0〉 ∼= Z. Given a prime p and
εn ∈ {−1, 0, 1} for n ≥ 1, the formulas

d2n = pne0 and d2n−1 = fne0 + εnen(mod q)

define a T-sequence {dn} in G.
Proof. Fix an integer k > 0 and an element g ∈ G with g 6= 0. By Theorem 6, it suffices to
prove that g 6∈ A(k,m) for some m ∈ N. Let g = be0 + a1e1 + · · · + aq−1eq−1, where b ∈ Z,
0 6 ai < o(ei) if o(ei) <∞ and ai ∈ Z if o(ei) =∞. Let t = (|b|+|a1|+· · ·+|aq−1|)(k+1) and
m = 20t. We are going to check that g 6∈ A(k,m). To accomplish this, we pick an arbitrarily
σ ∈ A(k,m) with σ 6= 0 and prove that g 6= σ. To this end, we prove that |φ0| > b, where φ0

is the coefficient of e0 in σ.
Since the sequence dn is defined by two different subsequences, we have to consider some

particular cases to estimate φ0.
a) Assume that

σ = l1d2r1 + l2d2r2 + · · ·+ lsd2rs = (l1p
r1 + · · ·+ lsp

rs)e0 = pr1 · σ′ · e0,

where m 6 2r1 < 2r2 < · · · < 2rs and σ′ ∈ Z. Since σ′ 6= 0, we have pr1 > p5|b| > |b|, and
σ 6= g.

b) Assume that σ = l1d2r1−1 + l2d2r2−1 + · · · + lsd2rs−1, where m < 2r1 − 1 < 2r2 − 1 <
· · · < 2rs − 1 and the integers l1, l2, . . . , ls are such that ls 6= 0 and

∑s
i=1 |li| 6 k + 1. Then

σ = (l1fr1 + · · ·+ ls−1frs−1 + lsfrs)e0 + l1εr1er1(mod q) + · · ·+ lsεrsers(mod q).

Since n3 < (n+ 1)3 − (n+ 1)2 and rs > |b|+ (k + 1), by (2), we can estimate the coefficient
φ0 of e0 in σ as follows

|φ0| > |l1fr1 + · · ·+ ls−1frs−1 + lsfrs| − (k + 1) > frs − k · pr
3
s−1+1 − (k + 1) =

= pr
3
s +

(
pr

3
s−rs + · · ·+ pr

3
s−r2s − k · pr3s−1+1 − k − 1

)
> pr

3
s > |b|.

Hence φ0 6= b and σ 6= g.
c) Assume that σ = l1d2r1−1 + l2d2r2−1 + · · · + lsd2rs−1 + ls+1d2rs+1 + · · · + lhd2rh , where

0 < s < h and

m < 2r1 − 1 < 2r2 − 1 < · · · < 2rs − 1,

m 6 2rs+1 < 2rs+2 < · · · < 2rh, li ∈ Z \ {0},
h∑
i=1

|li| 6 k + 1.

Since the number of summands with different powers of p in frs is rs + 1 > 10(k + 1) and
h − s < k + 1, by a simple pigeon-hole principle, there exists rs − 2 > i0 > 2 such that for
every 1 6 w 6 h− s we have

either rs+w < r3
s − (i0 + 2)rs or rs+w > r3

s − (i0 − 1)rs.

The set of all w such that rs+w < r3
s − (i0 + 2)rs we denote by B (it can be empty or have

the form {1, . . . , δ} for some 1 6 δ 6 h− s). Set D = {1, . . . , h− s} \B. Thus,

σ = l1εr1er1(mod q) + · · ·+ lsεrsers(mod q) +
(
l1fr1 + · · ·+ ls−1frs−1

)
e0+

+
∑
w∈B

ls+wd2rs+w +
(
lsp

r3s−r2s + · · ·+ lsp
r3s−(i0+2)rs

)
e0 +

(
lsp

r3s−(i0+1)rs + lsp
r3s−i0rs

)
e0+

+
(
lsp

r3s−(i0−1)rs + · · ·+ lsp
r3s

)
e0 +

∑
w∈D

ls+wd2rs+w .



130 S. S. GABRIYELYAN

Denote the coefficients of e0 in lines 1, . . . , 5 by A1, . . . , A5 respectively. Then φ0 = A1 +
· · ·+ A5. We estimate A1, . . . , A5 as follows. For A1 we have

|A1| 6 |l1|+ · · ·+ |ls| 6 k + 1 < pk+1 < pr
3
s−(i0+1)rs . (3)

Since ls 6= 0 and kp < pkp < prs , by (2), we have

|A2| =
∣∣l1fr1 + · · ·+ ls−1frs−1

∣∣ 6 k · pr3s−1+1 < pr
3
s−1+rs 6 p(rs−1)3+rs < pr

3
s−(i0+1)rs . (4)

Since 3(k + 1) < rs < prs , for A3 we have

|A3| =

∣∣∣∣∣∑
w∈B

ls+wp
rs+w +

(
lsp

r3s−r2s + · · ·+ lsp
r3s−(i0+2)rs

)∣∣∣∣∣ <∑
w∈B

|ls+w|pr
3
s−(i0+2)rs+

+|ls|2pr
3
s−(i0+2)rs < 3(k + 1)pr

3
s−(i0+2)rs < pr

3
s−(i0+1)rs . (5)

For A4 we have

pr
3
s−i0rs < |A4| = |ls|pr

3
s−(i0+1)rs + |ls|pr

3
s−i0rs < 2k · pr3s−i0rs . (6)

For A5 we have

A5 = lsp
r3s−(i0−1)rs + · · ·+ lsp

r3s +
∑
w∈D

ls+wp
rs+w = pr

3
s−(i0−1)rs · σ′′, (7)

where σ′′ ∈ Z. We distinguish between two cases.
Case 1. σ′′ 6= 0. By (3)–(7), we can estimate φ0 from below as follows

|φ0| > |A5| − (|A1|+ |A2|+ |A3|+ |A4|) > pr
3
s−(i0−1)rs − 3pr

3
s−(i0+1)rs − 2kpr

3
s−i0rs >

> pr
3
s−(i0−1)rs − (2k + 3)pr

3
s−i0rs > pr

3
s−i0rs > pr

2
s > p|b| > |b|.

Hence φ0 6= b and σ 6= g.
Case 2. σ′′ = 0. Then, by (3)–(5),

|φ0| > |A4| − (|A1|+ |A2|+ |A3|) > pr
3
s−i0rs − 3pr

3
s−(i0+1)rs > pr

3
s−(i0+1)rs > pr

2
s > p|b| > |b|.

Hence φ0 6= b and σ 6= g too.

In the following lemma we consider Z(p∞) as a subgroup of (−1
2
, 1

2
] by modulo 1. For

the sake of clarity, |x|(mod 1) denotes the distance from a real number x to the nearest
integer. Putting

f̃n =
1

pn3−n2 + · · ·+ 1

pn3−2n
+

1

pn3−n +
1

pn3 ∈ Z(p∞),

we obtain ([11])

0 < f̃n =
1

pn3−n2 + · · ·+ 1

pn3−2n
+

1

pn3−n +
1

pn3 <
n+ 1

pn3−n2 → 0. (8)
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Lemma 5. Let G = Z(p∞) +H, where H = 〈e0〉 ⊕ · · · ⊕ 〈eq−1〉 is finite. Define

d2n =
1

pn
∈ Z(p∞) and d2n−1 = f̃n + en(mod q) for n > 1.

Then d = {dn} is a T -sequence in G.

Proof. Let k > 0 be an integer and g ∈ G with g 6= 0. Then g = b
pz

+ a0e0 + · · · +

aq−1eq−1, where 0 6 ai < o(ei) and b
pz
∈ Z(p∞). Let π : G→ Z(p∞) be the projection. Then

π (〈g〉+H) = 〈 1
pβ
〉.

Set t = p(k+ 1) +β and m = 20t. By Theorem 6, it is enough to prove that g 6∈ A(k,m).
To achieve this, we take σ ∈ A(k,m) \ {0} arbitrarily and show that g 6= σ. To this end, we
prove two inequalities (mod 1):
1) 0 < |π(σ)| and 2) if π(g) 6= 0, then |π(σ)| < |π(g)|. This gives σ 6= g.

Since the sequence dn is defined by the two different subsequences, we have to consider
some particular cases to estimate π(σ).
a) Assume that σ = l1d2r1 + l2d2r2 + · · · + lsd2rs , where m 6 2r1 < 2r2 < · · · < 2rs. If
π(g) = 0, then π(σ) = σ 6= π(g). If π(g) 6= 0, then

0 < |σ| = |π(σ)| = |l1d2r1 + l2d2r2 + · · ·+ lsd2rs| 6
s∑
i=1

|li|
pri

6
k + 1

pr1
<

k + 1

pk+1+β
<

1

pβ
6 |π(g)|.

So π(σ) 6= π(g) and σ 6= g.
b) Assume that σ = l1d2r1−1 + l2d2r2−1 + · · · + lsd2rs−1, where m < 2r1 − 1 < 2r2 − 1 <
· · · < 2rs − 1 and the integers l1, l2, . . . , ls are such that ls 6= 0 and

∑s
i=1 |li| 6 k + 1. Since

n3 < (n+ 1)3 − (n+ 1)2 and rs > 5p(k + 1) + 5β, we have

π(σ) =
z′

pr3s−rs
+

ls
pr3s

, where z′ ∈ Z.

Since |ls| 6 k + 1 < rs
p
< prs−1, we have the following: if π(σ) = z′′

pα
, z′′ ∈ Z, is an irreducible

fraction then α > r3
s − rs + 1 > 5β. Hence π(σ) 6= π(g) and σ 6= g.

c) Assume that σ = l1d2r1−1 + l2d2r2−1 + · · · + lsd2rs−1 + ls+1d2rs+1 + · · · + lhd2rh , where
0 < s < h and

m < 2r1 − 1 < 2r2 − 1 < · · · < 2rs − 1,

m 6 2rs+1 < 2rs+2 < · · · < 2rh, li ∈ Z \ {0},
h∑
i=1

|li| 6 k + 1.

Since the number of summands with different powers of p in f̃rs is rs + 1 > 10p(k + 1) and
h − s < k + 1, by a simple pigeon-hole principle, there exists rs − 2 > i0 > 2 such that for
every 1 6 w 6 h− s we have

either rs+w < r3
s − (i0 + 2)rs or rs+w > r3

s − (i0 − 1)rs.

The set of all w such that rs+w < r3
s − (i0 + 2)rs we denote by K (it can be empty or have

the form {1, . . . , a} for some 1 6 a 6 h− s). Set L = {1, . . . , h− s} \K. Thus

σ =
(
l1er1(mod q) + · · ·+ lsers(mod q)

)
+ l1f̃r1 + · · ·+ ls−1f̃rs−1 +

∑
w∈K

ls+wd2rs+w +
ls

pr3s−r2s
+ · · ·+

+
ls

pr3s−(i0+2)rs
+

ls
pr3s−(i0+1)rs

+
ls

pr3s−i0rs
+

ls
pr3s−(i0−1)rs

+ · · ·+ ls
pr3s

+
∑
w∈L

ls+wd2rs+w .
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The elements in the lines 1, 2 and 4 we denote by σ1, σ2 and σ4 respectively. Since n3 <
(n+ 1)3 − (n+ 1)2 and rs > β, the projection on Z(p∞) of every summand in lines 1 and 2
has the form δ

pγ
, with γ 6 r3

s − (i0 + 2)rs and δ ∈ Z. Thus,

π(σ1 + σ2) =
c

pr3s−(i0+2)rs
, for some c ∈ Z.

Hence
π(σ) =

c

pr3s−(i0+2)rs
+

ls
pr3s−(i0+1)rs

+
ls

pr3s−i0rs
+ π(σ4). (9)

Since rs > 10p(k+ 1), then 1
1−1/prs

< 1
1−1/p10

< 1
1−1/25

= 32
31

and 2k < p2k < prs . Thus, we
can estimate π(σ4) as follows:

|π(σ4)| =
∣∣∣( ls
pr3s−(i0−1)rs

+ · · ·+ ls
pr3s

)
+
∑
w∈L

ls+w
1

prs+w

∣∣∣ <
<

|ls|
pr3s−(i0−1)rs

(
1 +

1

prs
+

1

p2rs
+ . . .

)
+

1

pr3s−(i0−1)rs+1

∑
w∈L

|ls+w| 6
|ls|

pr3s−(i0−1)rs
×

× 1

1− 1
prs

+
k

pr3s−(i0−1)rs+1
<

1

pr3s−(i0−1)rs

(
k

32

31
+ k

1

p

)
<

2k

pr3s−(i0−1)rs
<

1

pr3s−i0rs
. (10)

We distinguish between two cases.
Case 1. π(σ4) 6= 0. By (10) we have the following. If π(σ4) = c̃

pα
is an irreducible fraction,

then α > r3
s − i0rs > 5β. Thus, by (9), we also have

π(σ) =
c′′

pα
6= 0, where c′′ ∈ Z and (c′′, p) = 1.

Since π(g) ∈ 〈 1
pβ
〉 and α > 5β, we have π(σ) 6= π(g) and σ 6= g.

Case 2. π(σ4) = 0. Let ls = pψ · l′s, where (p, l′s) = 1 and ψ < k < rs. Thus, by (9),

π(σ) =
c

pr3s−(i0+2)rs
+

ls
pr3s−(i0+1)rs

+
ls

pr3s−i0rs
=

c′′

pr3s−i0rs−ψ
,

where c′′ ∈ Z and (c′′, p) = 1. Since r3
s − i0rs − ψ > r3

s − (i0 + 1)rs > 5β, we have π(σ) 6= 0
and π(σ) 6= π(g). Thus σ 6= g.

Put S0 = 0 and Sn = 1 + 2 + · · ·+ n for n ∈ N.

Lemma 6. Let q be an integer with q > 2. Then (Sn−1 + k)q+ i 6= (Sm−1 + l)q+ j for every
m,n > 1, 0 6 i, j < q, 1 6 k 6 n and 1 6 l 6 m such that (n, i, k) 6= (m, j, l).

Proof. We have three cases:
(1) The case n 6= m. We may assume that n 6 m − 1. Then for every 0 6 i, j < q and
1 6 k 6 n we have

(Sn−1 + k)q + i 6 Snq + (q − 1) = (Sn + 1)q − 1 < (Sm−1 + 1)q + j.

So (Sn−1 + k)q + i 6= (Sm−1 + l)q + j for every 0 6 i, j < q, 1 6 k 6 n and 1 6 l 6 m.
(2) The case n = m and i 6= j. It is clear that

(Sn−1 + k)q + i 6= (Sn−1 + l)q + j for every 1 6 k, l 6 n.

(3) The case n = m, i = j and k 6= l. It is clear that (Sn−1 + k)q + i 6= (Sn−1 + l)q + i.

As usual, o(g) denotes the order of an element g of an Abelian group G.
In the following lemma we modify the construction of [15, Example 5] (or [16, Example

2.6.2]).
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Lemma 7. Let H = 〈e0〉 ⊕ · · · ⊕ 〈eq−1〉 and G = H ⊕
⊕∞

i=q〈ei〉 =
⊕∞

i=0〈ei〉, where ui :=
o(ei) <∞ for every i > 0. Define a sequence d = {dn}n>2q−1 as follows. For even indices we
set
d2q = eq, d2(q+1) = 2eq, . . . , d2(q+uq−2) = (uq − 1)eq, d2(q+uq−1) = eq+1, d2(q+uq) = 2eq+1, . . .

For odd indices and for 0 6 i < q and n > 1, we define
d2(nq+i)−1 = ei + e(Sn−1+1)q+i + e(Sn−1+2)q+i + · · ·+ eSnq+i.

Assume that one of the following two conditions holds:
a) there exists an integer j0 > 0 such that uj = uj0 for all integers j ≥ j0 and uj0 is divided
by every u0, . . . , uq−1, or b) un →∞.
Then d = {dn} is a T -sequence in G.

Proof. Let k > 0 be an integer and g ∈ G with g 6= 0. By Theorem 6, we have to show that
there is m ∈ N such that g 6∈ A(k,m).

Step 1. By construction, d2n = λ(n)eµ(n), where 1 6 λ(n) < o(eµ(n)) and µ(n) → ∞ at
n → ∞. Since also (Sn−1 + 1)q + i → ∞ at n → ∞, we have the following: for every j > q
there exists m ∈ N such that A(k,m) ⊂ H ⊕

⊕∞
i=j〈ei〉. Thus,

∞⋂
m=1

A(k,m) ⊂
⋂
j>q

(
H ⊕

∞⊕
i=j

〈ei〉
)

= H.

So, the condition of the Protasov-Zelenyuk criterion holds for every g 6∈ H. (Note that a
similar inclusion was proved in [11, Proposition 3.3] for another special case of T -sequence.)

By Step 1, it remains to check the Protasov-Zelenyuk criterion only for non-zero elements
of H. Thus, in what follows, we assume that g ∈ H and g 6= 0.

Note also that the summands of all the elements d2(nq+i)−1 − ei are independent, where
0 6 i < q and n > 1. Indeed, this follows from Lemma 6 and the independence of the
sequence {en}.

Step 2. Let g ∈ A(k, 2m) for some natural m. Then g has the following representation

g = l1d2r1−1 + l2d2r2−1 + · · ·+ lsd2rs−1 + ls+1d2rs+1 + ls+2d2rs+2 + · · ·+ lhd2rh , (11)

where all summands are nonzero,
∑h

i=1 |li| 6 k + 1, 0 < s 6 h (by the construction of d)
and

2m < 2r1 − 1 < 2r2 − 1 < · · · < 2rs − 1, 2m 6 2rs+1 < 2rs+2 < · · · < 2rh.

Since all the summands of all the elements d2(nq+i)−1 − ei are independent and since g ∈ H,
by the construction of the elements d2n and (11), there is a subset Ω of the set {s+1, . . . , rh}
such that

lsd2rs−1 +
∑
w∈Ω

lwd2rw ∈ H. (12)

Step 3. By Step 2, to prove the lemma it is enough to find m0 such that (12) does not
hold. We consider two cases a) and b) separately.

Assume that a) holds. Set m0 = 4q(j0 +1)(k+1). Then d2rs−1−ers(mod q) contains exactly

t =
1

q
(rs − rs(mod q)) >

1

q
(m0 − q) > 4k + 3

independent summands of the form ej with j > ( t(t−1)
2

+1) > m0 > j0. Since lsd2rs−1 6= 0 and
uj0 is divided by every u0, . . . , uq−1, we may assume that ls is not divided by uj0 . So, lsd2rs−1

contains at least 4k + 3 non-zero independent summands of the form lsej with j > j0.
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Since |Ω| 6 h− s 6 k and lwd2rw has the form avev, the conclusion of (12) does not hold.
Thus, g 6∈ A(k, 2m0).

Assume that b) holds. Choose j0 > q such that uj > 2(k + 1) for every j > j0. Set
m0 = 4j0(q+1)(k+1). Then d2rs−1−ers(mod q) contains at least 1

q
(rs−rs(mod q)) > 1

q
(m0−q) >

4j0(k+ 1) summands that are multiples of ej. So, since |ls| 6 k+ 1, lsd2rs−1 contains at least
3(k + 1) non-zero independent summands of the form lsej with j > j0.

Since |Ω| 6 h− s 6 k and lwd2rw has the form avev, the conclusion of (12) does not hold.
Thus, g 6∈ A(k, 2m0).

4. Proofs of Theorems 3, 4 and 5. Following [3], we say that a sequence u = {un} is
a TB-sequence in a group G if there is a precompact Hausdorff group topology on G in
which un → 0.

Proof of Theorem 1. Let G be an infinite Abelian group. It is known ([6]) that G admits
a non-trivial TB-sequence u. As it was noted in [8], a sequence u is a TB-sequence if and only
if it is a T -sequence and (G,u) is maximally almost periodic. So n(G,u) = 0. Thus, G admits
a complete non-discrete Hausdorff group topology with trivial von Neumann radical.

Let X be an Abelian topological group and u = {un} a sequence of elements of X∧.
Following D. Dikranjan, C. Milan and A. Tonolo ([7]), we denote by su(X) the set of all
x ∈ X such that (un, x)→ 1.

A proof of the following lemma can be found, for example, in [16, Example 2.6.3].

Lemma 8. Let d2n = 1
pn
∈ Z(p∞) and d̃ = {d2n}. Then x ∈ sd̃(∆p) if and only if there

exists m = m(x) ∈ Z such that

(λ, x) = exp(2πimλ) for all λ ∈ Z(p∞). (13)

In other words, x ∈ sd̃(∆p) if and only if x = m1 for some m ∈ Z. In particular,
Cl
(
sd̃(Z(p∞))

)
= ∆p.

The following theorem is the algebraic part of [8, Theorem 4]. It shall be used to compute
von Neumann kernels.

Theorem 7. If d = {dn} is a T -sequence of an Abelian group G then n(G,d) = sd ((Gd)
∧)⊥

algebraically.

Another ingredient of the proof is the following reduction principle.

Lemma 9. Let H be a subgroup of an Abelian group G. If there exists a subgroup G′ of G
containing H such that H ∈ NR(G′) (or H ∈ NRC(G′)) then H ∈ NR(G) (respectively,
H ∈ NRC(G)).

Proof. Since H ∈ NR(G′), there exists a Hausdorff group topology τ ′ on G′ such that
H = n(G′, τ ′). Furthermore, if H ∈ NRC(G′) then τ ′ can be chosen to be complete. Let
τ be the group topology on G such that G′ ∈ τ and (G′, τ ′) is a subspace of (G, τ). We
note that τ is complete whenever τ ′ is. Since (G′, τ ′) is an open subgroup of (G, τ), one has
n(G′, τ ′) = n(G, τ) (see also [8, Lemma 4] for a more general statement). This proves that
H = n(G, τ).
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Proof of Theorem 3. Our goal is to construct a T -sequence d in G satisfying

sd ((Gd)
∧)
⊥

= H. (14)

Combining this with Theorem 7, we obtain that n(G,d) = H. Since (G,d) is complete, this
shows that H ∈ NRC(G).

The rest of the proof is split into the following four cases.
(1) H is infinite. (2) H is finite and G is not torsion. (3) H is finite, G is torsion but not
reduced. (4) H is finite and G is both torsion and reduced.

Since H is finitely generated, it is a direct finite sum of cyclic groups.
(1) H is infinite. Then H = 〈e0〉⊕〈e1〉⊕· · ·⊕〈eq−1〉, where 〈e0〉 ∼= Z. Applying the reduction
principle (Lemma 9), we may assume that G = H. Choose any prime p and let εn = 1 for
all n ∈ N. Let d = {dn} be the T -sequence in G as in Lemma 4. To establish (14), it suffices
to prove that sd((Gd)

∧) = 0. Let
ω = x0 + x1 + · · ·+ xq−1 ∈ (Gd)

∧, xi ∈ 〈ei〉∧, and (dn, ω)→ 1.
Then (d2n, ω) = (pne0, x0) → 1. Hence x0 ∈ Z(p∞) (see [2] or [4, Remark 3.8]). If x0 = ρ

pτ
,

ρ ∈ Z, τ > 0, then for n = qs + i > τ we have (d2(qs+i)−1, ω) = (ei, xi) for every 0 6 i < q.
So (d2(qs+i)−1, ω)→ 1 only if xi = 0 for every i. Hence ω = 0.
(2) H is finite and G is not torsion. Fix e0 ∈ G such that 〈e0〉 ∼= Z. Since H is finite,
H ∩ 〈e0〉 = 0. Let H = 〈e1〉 ⊕ · · · ⊕ 〈eq−1〉 be a direct decomposition of H. Then G′ =
〈e0〉 ⊕ 〈e1〉 ⊕ · · · ⊕ 〈eq−1〉 ∼= Z⊕H is a subgroup of G containing H. By Lemma 9, we may
assume that G = G′.

Choose any prime p and set εn = 1 if n(mod q) > 0 and εn = 0 if n(mod q) = 0. Let
d = {dn} be the T -sequence in G as in Lemma 4. To establish (14), it suffices to show that
Cl(sd(G∧d )) = Z∧ = T. Let

ω = x0 + x1 + · · ·+ xq−1 ∈ (Gd)
∧, xi ∈ 〈ei〉∧, and (dn, ω)→ 1.

Then (d2n, ω) = (pne0, x0) → 1. Hence x0 ∈ Z(p∞) (see [2] or [4, Remark 3.8]). Let x0 =
ρ
pτ
, ρ ∈ Z, τ > 0. Then for any n = qs + i > τ we have (d2qs−1, ω) = 1 if i = 0, and

(d2(qs+i)−1, ω) = (ei, xi) if 0 < i < q. So (d2n−1, ω) → 1 only if xi = 0 for every 0 < i < q.
Thus ω = x0, where x0 ∈ Z(p∞) ⊂ T. So sd(G∧d ) ⊆ Z(p∞). Let us prove the converse
inclusion. Let ω = x0 = ρ

pτ
∈ Z(p∞), ρ ∈ Z, τ > 0. By the definition of dm we have

(d2n, x0) = exp
{

2πi
pnρ

pτ

}
, (d2n−1, x0) = exp

{
2πi

fnρ

pτ

}
.

Thus, (dm, x0) = 1 for every m > 2τ and hence sd(G∧d ) ⊇ Z(p∞).
Hence sd(G∧d ) = Z(p∞) and Cl(sd(G∧d )) = T.

(3) H is finite, G is torsion but not reduced. Then G contains a subgroup isomorphic to
Z(p∞) for some prime p. By Lemma 9, we may assume that G ∼= Z(p∞) + H. Let H =
〈e0〉 ⊕ · · · ⊕ 〈eq−1〉 be a direct decomposition of H. Let d = {dn} be the T -sequence in G as
in Lemma 5. To establish (14), it suffices to prove that H⊥ = Cl(sd((Gd)

∧)).
Let us prove first that sd((Gd)

∧) ⊆ H⊥. We use the notations from Lemma 3. Assume
that

ω = x0 + y ∈ sd((Gd)
∧), where x0 ∈ ∆p, y ∈ H∧1 .

Then (d2n, ω) = (d2n,x0)→ 1. By (13), x0 = m1 for some m ∈ Z and (λ,x0) = exp(2πimλ),

∀λ ∈ Z(p∞). In particular, (f̃n,x0) = exp(2πimf̃n) for every n > 1. By (8), we obtain that
(f̃n,x0)→ 1. So, for every 0 6 i < q, we have (s→∞)
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(d2(sq+i)−1, ω) = (f̃sq + ei, ω) = (f̃sq,x0) · (ei, ω)→ (ei, ω) = 1.
So ω ∈ 〈ei〉⊥ for every 0 6 i < q. Hence ω ∈ H⊥.

Let us show now the reverse inclusion H⊥ ⊆ Cl(sd((Gd)
∧)). By Lemma 3, it is enough

to prove that {S0 ∪ 〈pk1〉} ⊂ sd((Gd)
∧). Let ω ∈ S0. Then, by the construction of S0, for

ω = x0 + y and x0 = (x0, . . . , xk−1, 0, . . . ) = m · 1 we have

(d2n, ω) = exp
{

2πi
1

pn
(x0 + · · ·+ xk−1p

k−1)
}
→ 1, at n→∞.

(d2(sq+i)−1, ω) = (f̃sq,x0) · (ei, ω) = (f̃sq,x0) = exp{2πif̃sqm} → 1.

Hence S0 ⊂ sd((Gd)
∧). For pk1 we obtain

(d2n, p
k1) = exp

{
2πi

1

pn
· pk
}
→ 1, at n→∞.

(d2(sq+i)−1, p
k1) = (f̃sq, p

k1) = exp{2πif̃sqpk} → 1.
Thus, H⊥ = Cl(sd((Gd)

∧)).
(4) H is finite and G is both torsion and reduced. Since G is not bounded, G contains an
independent sequence {bn} of elements such that o(bn) → ∞. Let H = 〈e0〉 ⊕ · · · ⊕ 〈eq−1〉
be a direct decomposition of H. Using q times Lemma 1, we can find m ∈ N such that the
sequence {e0, e1, . . . , eq−1, bm, bm+1, . . . } is independent. Define eq+k = bm+k for all integers
k ≥ 0. Clearly, ui := o(ei) <∞ for every i > 0 and ui →∞. By Lemma 9, we may assume
that

G = H ⊕
∞⊕
i=q

〈ei〉 =
∞⊕
i=0

〈ei〉.

Then (Gd)
∧ =

∏∞
i=0〈ei〉.

Let d = {dn} be the T -sequence in G as in Lemma 7. To establish (14), it suffices to
prove that

Cl(sd((Gd)
∧)) =

∞∏
i=q

〈ei〉. (15)

We modify the proof of [11, Proposition 3.3]. Let ω = (a0, a1, . . . ) ∈ sd((Gd)
∧). By

definition, there exists N ∈ N such that |1 − (d2n, ω)| < 0.1,∀n > N . Thus, there is N0 >
N such that |1 − (jel, ω)| = |1 − (jel, al)| < 0.1,∀j = 1, . . . , ul − 1, for every l > N0.
This means that al = 0 for every l > N0. So ω ∈

⊕∞
i=0〈ei〉 ⊂ (Gd)

∧. Since (d2(nq+i)−1, ω)
→ 1 too and (d2(nq+i)−1, ω) = (ei, ai) for all sufficiently large n, we obtain that ai = 0 for
any i = 0, . . . , q − 1. Thus sd((Gd)

∧) ⊆
⊕∞

i=q〈ei〉. The converse inclusion is trivial. Hence
sd((Gd)

∧) =
⊕∞

i=q〈ei〉 and it is dense in
∏∞

i=q〈ei〉. So, Cl(sd((Gd)
∧)) =

∏∞
i=q〈ei〉.

Proof of Theorem 4. Let us prove the implication (1) ⇒ (2). Assume that G contains a
subgroup of the form H(ω). Let H = 〈e0

0〉 ⊕ · · · ⊕ 〈e
q
0〉 with ei0 ∈ G. By our assumption, G

contains a subgroup of the form Y0 ⊕ Y1 ⊕ · · · ⊕ Yq, where

Yj =
∞⊕
i=0

〈eji 〉, 0 6 j 6 q, eji ∈ G,

and the order of eji is equal to uj for every i > 0. By the reduction principle (Lemma 9),
we may assume that G = Y0 ⊕ Y1 ⊕ · · · ⊕ Yq. Further, since the von Neumann radical of
a product of topological groups is the product of their von Neumann radicals, it is enough to
construct a Hausdorff group topology τj on Yj such that n(Yj, τj) = 〈ej0〉. So, we can restrict
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ourselves to the case H = 〈e0〉 and G = H ⊕
⊕∞

i=1〈ei〉 =
⊕∞

i=0〈ei〉, where the order of ei is
equal to u for every i > 0.

Let d = {dn} be the T -sequence in G as in Lemma 7. As in the proof of Theorem 3,
we only need to show that equality (14) holds. To this end, it is enough to prove that
Cl(sd((Gd)

∧)) =
∏∞

i=1〈ei〉. The proof of this equality is the same as the proof of equality (15)
in item (4) of Theorem 3 (where one needs to take q = 1).

Implication (2)⇒ (3) is trivial.
Let us prove implication (3) ⇒ (1). Let H = 〈e1〉 ⊕ · · · ⊕ 〈eq〉. Assume that (1) fails.

By Lemma 2, there exists 1 6 i0 6 q such that G does not contain a subgroup of the
form 〈ei0〉(ω). Set ni0 = o(ei0). Let ni0 = pk11 . . . pkll and expG = pa11 . . . pall · p

al+1

l+1 . . . p
at
t ,

where p1, . . . , pt are distinct prime integers. For 1 6 j 6 l we put mj = expG/p
aj−kj+1
j . Set

πj : G→ G, πj(g) = mjg, and Gj = πj(G). Then πj(ei0) 6= 0 for every 1 6 j 6 l.

(a) Let us prove that there exists 1 6 j 6 l such that Gj is finite.
Assume for a contradiction that Gj is infinite for every j. Since expGj = p

aj−kj+1
j , Gj

contains a subgroup of the form
∞⊕
i=1

〈̃bi〉, where b̃i ∈ Gj and 〈̃bi〉 ∼= Z(pj).

Thus, for every i > 1 there exists an element bi ∈ G such that o(bi) = p
kj
j and πj(bi) = b̃i.

Indeed, if y is any element such that πj(y) = b̃i, then we may put bi = cjy, where cj =

expG/p
aj
j (and mj = cj · p

kj−1
j ).

Let us prove that the sequence {bi} is independent. Assuming the converse we obtain
that

s1bi1 + s2bi2 + · · ·+ swbiw = 0 and srbir 6= 0, 1 6 r 6 w. (16)

Let sr = pvrj · Ar, where p and Ar are coprime. Set v = min{v1, . . . , vw}. By our choice of bi
we have v < kj. Thus, if we multiply equality (16) by cj · p

kj−v−1
j then we obtain

A1p
v1−v
j b̃i1 + A2p

v2−v
j b̃i2 + · · ·+ Awp

vw−v
j b̃iw = 0.

Since there exists r such that vr = v and Arp
vr−v
j b̃ir = Arb̃ir 6= 0, we obtain that the

elements b̃i are dependent. Since the sequence {b̃i} is independent, we obtain a contradiction.
Since the sequence {bi} is independent, G contains a subgroup of the form

∞⊕
i=1

〈bi〉, where 〈bi〉 ∼= Z(p
kj
j ),

for every 1 6 j 6 l. Since p1, . . . , pl are coprime, G contains a subgroup of the form 〈ei0〉(ω).
This is a contradiction. Thus there exists 1 6 j 6 l such that Gj is finite.

(b) Let us prove that there is no Hausdorff group topology τ such that n(G, τ) = H. (We
repeat the arguments of D. Remus (see [5])).

Let τ be any Hausdorff group topology on G and let j be such that Gj is finite. Then
Ker(πj) is open and closed. So n(G, τ) ⊆ Ker(πj). Since, 0 6= πj(ei0) ∈ H/Ker(πj), we obtain
that H 6= n(G, τ).

Proof of Theorem 5. (1) is equivalent to (2) by Corollary 1.
Let us prove that (2) yields (3). If G does not satisfy condition (3) then expG < ∞.

Let expG = pa11 p
a2
2 . . . patt , where p1, . . . , pt are distinct prime integers. By Lemma 2, there
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exists 1 6 i0 6 t such that G does not contain a subgroup of the form Z(p
ai0
i0

)(ω). Set
H = 〈ei0〉, where o(ei0) = p

ai0
i0

. Then H is finite and, by Theorem 4, H 6∈ NR(G). This is
a contradiction. Thus, (2) yields (3).

Let us prove that (3) yields (1). If expG =∞, the assertion follows from Theorem 3. If
expG <∞, the assertion follows from Theorem 4.

Acknowledgement: I am deeply indebted to Professor Shakhmatov for numerous sugges-
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derman.
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