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Let G be an infinite Abelian group. We give a complete characterization of those finitely
generated subgroups of G which are the von Neumann radicals for some Hausdorff group
topologies on G. It is proved that every infinite finitely generated Abelian group admits
a complete Hausdorff minimally almost periodic group topology. The latter result resolves
a particular case of Comfort’s problem.
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B crarpe maercs mosHas xapakTepu3alus KOHEYHO MOPOXKIEHHBIX HOArPYIIT OECKOHEIHOM
abeJieBoit Tpynibl G, aBisiomuxcst pagukagamu ¢bor Hefimana st xaycmopdoBBIX TOMOIOT i
na G. JlokazaHo 9TO Kaxk/ast HeCKOHETHAsT KOHEYHO MTOPOXK/IeHHAas abesieBast TPYIIIIa, J0IMyCKaeT
MTOJTHY IO XaycA0pdOBYI0 MUHUMAJIBHO IIOYTH [TEPUOINYIECKYO Torojoruto. [lociennnii pesyiib-
TaT YaCTUIHO pemaer mpobiiemy Komdopra.

1. Introduction. Let G be an Abelian group G. Recall that G is bounded if there exists
a positive integer n such that ng = 0 for every g € G, and the minimal integer n with this
property is called the exponent of G denoted by exp(G). When G is not bounded, we write
exp(G) = oo and say that G has infinite exponent.

For an Abelian topological group X, X" denotes the group of all continuous characters
on X endowed with the compact-open topology and

n(X) = ﬂ kery
XEXAN

denotes the von Neumann radical of X. The richness of the dual group X" is one of the
most important properties of X, and it is characterized by the von Neumann radical n(X).

Following J. von Neumann ([12]), a group X is called minimally almost periodic (MinAP)
if n(X) = X, and it is called mazimally almost periodic if n(X) = 0.

The following proposition (proved in Section 3) is a simple corollary of the main result
of [6].

Theorem 1. Every infinite Abelian group admits a complete non-discrete Hausdorff group
topology with trivial von Neumann radical.
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A much deeper question is whether every infinite Abelian group admits a Hausdorff group
topology with a non-zero von Neumann radical. A positive answer to this question was given
by M. Ajtai, I. Havas and J. Komlés ([1]). E. G. Zelenyuk and I. V. Protasov (|15]) proved
that every infinite Abelian group G admits a complete Hausdorff group topology for which
characters do not separate points. I. V. Protasov (|14]) posed the question whether every
infinite Abelian group admits a minimally almost periodic group topology. A simple example
of a bounded group G which does not admit any Hausdorff group topology 7 such that (G, 7)
is minimally almost periodic is given by D. Remus (|5]). This justifies the following problem.

Question (Comfort’s Problem 521 [5]). Does every Abelian group which is not of
bounded order admit a minimally almost periodic topological group topology? What about
the countable case?

Moreover, it was not known even whether every infinite finitely generated Abelian
group G admits a Hausdorff minimally almost periodic group topology. We answer this
question in the affirmative theorem.

Theorem 2. Every infinite finitely generated Abelian group G' admits a complete Hausdorff
minimally almost periodic group topology.

Let G be an infinite Abelian group and H its infinite finitely generated subgroup. By
Theorem 2, there is a Hausdorff MinAP group topology 7" on H. Let 7 be a group topology
on G such that H € 7 and 7|y = 7/. Then the von Neumann radical of (G,7) is H (see
Lemma 9 below). So, every infinite finitely generated subgroup of an Abelian group G can
be considered as the von Neumann radical for some Hausdorff group topology on GG. Noting
that every finite group is finitely generated, it is natural to ask, for which finite subgroup H
of an infinite Abelian group G there is a Hausdorff group topology 7 on GG such that H is
the von Neumann radical of (G, 7).

Let G be an infinite Abelian group. We denote by NR(G) (by N'RC(G)) the set of all
subgroups H of G for which there exists a (complete) non-discrete Hausdorff group topology 7
on G such that n(G,7) = H. It is clear that NRC(G) C N'R(G). Therefore, by Theorem 1,
{0} € NRC(G), and, by [15], NRC(G) # {{0}}. The general question of describing the sets
NR(G) and N'RC(G) was raised in [9].

The main goal of the paper is to describe all finitely generated subgroups of an infinite
Abelian group G which are contained in NR(G).

For an Abelian group G, the symbols FGS(G) and FS(G) denote the set of all finitely
generated subgroups and finite subgroups G, respectively.

Theorem 2 is an immediate consequence of the following theorem.

Theorem 3. Let G be an Abelian group that is not bounded. Then for every finitely
generated subgroup H of G there exists a complete Hausdorff group topology T on G such
that H = n(G, 1), i.e., FGS(G) C NRC(G).

The case of bounded groups is more complicated. The direct sum of w copies of an Abelian
group H we denote by H®).

Theorem 4. Let G be an infinite Abelian bounded group. Let H € FS(G) = FGS(G).
Then the following statements are equivalent: 1) G contains a subgroup of the form H“);

9) H € NRC(Q); 3) H e NR(Q).
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As an evident corollary of Theorems 3 and 4 we obtain the following result resolving |9,
Problem 3].

Corollary 1. Let G be an infinite Abelian group and H € FGS(G). Then H € N'R(G) if
and only if H € NRC(G), i.e.,

FS(G) NNR(G) = FS(G) NNRC(G), and FGS(G) NNR(G) = FGS(G) N NRC(G).

By Corollary 1, in all subsequent theorems and corollaries of this section only the (si-
mpler) option N'R(G) is considered.
Also as a trivial corollary of Theorems 3 and 4 we obtain the main result of [9].

Corollary 2 (|9]). An Abelian group G admits a Hausdorff group topology with non-trivial
finite von Neumann radical if and only if it is not torsion free.

Proof. Clearly, if G admits a Hausdorff group topology with non-trivial von Neumann radical
it must contain a nonzero element of finite order. Conversely, since every finite subgroup is
finitely generated and since any infinite Abelian bounded group contains a subgroup of the
form Z(p)“ for some prime p, the corollary immediately follows from Theorems 3 and 4. [

The following problem was posed in [9, Problem 6|: describe all infinite Abelian groups G
such that FS(G) € NR(G). (We note that this inclusion is strict since N'R(G) contains
a countably infinite subgroup.) A solution to this problem is provided by the following
theorem.

Theorem 5. Let G be an infinite Abelian group. Then the following statements are equi-
valent: 1. FGS(G) C NR(G); 2. FS(G) € NR(G); 3. G satisfies one of the following
conditions: 1) expG = o0; 2) expG = m is finite and G contains a subgroup of the
form Z(m)®).

We can reformulate Theorem 5 for bounded groups as follows. It is well known that a
bounded group G has the form G = @, ,, @2, Z(p')*#), where M is a finite set of prime
numbers. Leading Ulm-Kaplansky invariants of G are the cardinal numbers &, ,,p € M.

Corollary 3. All finite subgroups H of an infinite bounded Abelian group G belong to
NR(G) if and only if all leading Ulm-Kaplansky invariants of G are infinite.

The article is organized as follows. In Section 2 we prove some auxiliary lemmas that
will be used to prove the main results. In Section 3 special T-sequences are constructed for
some Abelian groups. These T-sequences are used to define the topologies with the desired
property in Theorem 3. In the last Section 4 we prove Theorems 3, 4 and 5.

2. Auxiliary lemmas. Let us recall that a subset X of an Abelian group G is called
independent provided that for every finite sequence x4, ..., x, of pairwise distinct elements
of X and each sequence mq,...,m, of integer numbers, if mxy + --- + m,x,, = 0 then
miz; =0 for all i € {1,...,n}.

Lemma 1. Let {b,},c., be an independent sequence of an Abelian group G. Then for every
nonzero element g of G there is ny such that the set {g, b, bng+1, - - - } is independent.
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Proof. Set H = @n@( ). If the intersection H N (g) is trivial then one can take ny = 0.
Otherwise, H N (g) is a subgroup of (g), hence H N (g) = (mg) # 0 for some m € N.
The support of mg € @, (b,) is finite, so there exists k such that mg € @%_,(b,). Thus,
HN{g) = (mg) C @F_y(b,). Therefore, (g) NP>, ., (b,) = 0. Putting ng = k-+ 1 we obtain
that the set {g, bny, bng+1, - - - } is independent. O

As usual, for an element g of an Abelian group G, we denote by (g) the subgroup of G
generated by g.
For the proof of Theorem 4 we need the following lemma.

Lemma 2. Let G be an infinite Abelian group and ey,...,e, € G. Then the following
assertions are equivalent:
1. G contains a subgroup of the form (e;)™ @ (e2)™ @ - @ (e,)“;

2. G contains a subgroup of the form {(e;)“) for every 1 <i < q.

Proof. We need to prove only the implication (2) = (1). It is easy to see that we can restrict
ourselves to the case when e; has a finite order n; for every 1 <i < gq.
Let plfl e pi’l be the prime decomposition of the least common multiple of n,...,n,.

Since any p?j is a divisor of some ny;), by hypothesis, G contains a subgroup of the form
GB H?, where HJ = Z(p?-j).

Thus, G' contains the following subgroup

- (@ e @ )

Evidently, the group @ H)\ i@ @n H L@@ @n , Hl,.; contains a subgroup of
the form (e;) for every 1 i <q. O

Let us consider the group Z(p>) with discrete topology. Then Z(p>)" = A, is the
compact group of p-adic integers which elements are denoted by = = (a;),0 < a; < p, and
the identity is 1 = (1,0,0,...). By [10, Remark 10.6], (1) is dense in A, and, by [10, 25.2],
(A, 1) = exp{2mi - A\} for every A € Z(p*>). Following [10, 10.4], we denote by Agx, k > 1,
the set of all x = (xo,...,2k-1,%k,...) € A, such that zp = -+ = 24,y = 0 and put
Ao = A,. Note that Ay, is just p*A,.

A group G with the discrete topology is denoted by Gg4. If H is a subgroup of (G4)" then

L:={g€G: (g9,h) =1Vh € H}. We use the following lemma to prove Theorem 3.

Lemma 3. Let G = Z(p™) + H, where H is a finite group, endowed with the discrete
topology. Let Hy be a finite group such that G = Z(p*>) @ H,. Then there exist k > 0 and
a finite set Sy C (1) ® H}> such that H+ = (Sy) + Ay. In particular, the finitely generated
subgroup (Sp U {p*1}) is dense in H*.

Proof. Let H = (e1) ® --- @ (e;) ® (e141) B - - -  (eq), where o(e;) = p for 1 < i < [ and
o(e;) = p", pi # p, for [ <i < gq. Then for some integer ¢ we have

Hi=(g1) @ @ () D (e141) & - D (eg),

where o(g;) = p" for some natural number r; and e; = algo + aigy + -+ +alg, 1 < i <,
where gy = }% € Z(p>), and 0 < aé < p"i for every 0 < j < t. Since H; is finite, we will
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identify Hy with H]". Let w =X+ A\1g1 + -+ + Mg + Mev1€i41 + - -+ + Aeggi€q € G, where
X = (20, T1,...) € A,,0< N <plfor 1 <i<tand 0< Ay <p}jj$j for1<j<q-1 By
definition, w € HL iff (w,e;) = 1 for every 1 < i < ¢. In particular, for every 1 < j < g — |,
_ A _
(w, e145) = —mz; = 0(mod 1).
I+j

Since A\pyj < pﬁ}fj, we have A\, ; = 0 for every 1 < j < ¢— (. So, w € H* if and only if it has
the form w = x + A\g1 + -+ + Mgs and (w, e;) = 1,V1 <4 < 1. Thus, by [10, 25.2], w € H*
if and only if A\4; = 0, for every 1 < j < ¢ — [, and for any 1 < i <[, (mod1)

a Aal A\eal

0 ro—1 _
]%(azo—i-xlp—i—H'—i—xm,lpo )+ TR = 0. (1)

Denote by Sy the set of all w € H+ which have the form
w=x+Mg1+ -+ NG, Xx=(To,T1,--.,Tpy—1,0...),

where x and )y, . .., \; satisfy (1). By definition, Sy € H+N((1) & H{") and for every w € H*
there is wy € Sy such that w —wy = (0,...,0,0 1, Ty, Tros1,---) € Apy. Set k = rg. Then
H+ C (Sp) + Ay. The converse inclusion follows from (1). By [10, Remark 10.6], (p*1) is
dense in Ay. So, (Sp U {p*1}) is dense in H*. O

3. Construction of T-sequences. In this section we construct T-sequences which will be
needed for the proofs of the main results.

Following E. G. Zelenyuk and I. V. Protasov (|15], [16]), we say that a sequence d = {d,}
in a group G is a T-sequence if there is a Hausdorff group topology on G with respect to
which d,, converges to zero. The group G equipped with the finest group topology with this
property is denoted by (G, d). We note also that, by [16, Theorem 2.3.11], the group (G, d)
is complete.

For a sequence {d,} and k,m € N, one defines ([15])

A(k,m) ={md,, + -+ nsdp,: m<ry < -0 <71y,

ni,na, . ong € Z\{0}, Y |ng| <k +1}U{0}.
=1

In this section we make extensive use of the following Protasov-Zelenyuk’s criterion.

Theorem 6 ([15]). A sequence {d,} of elements of an Abelian group G is a T-sequence if
and only if, for every integer k > 0 and for each element g € G with g # 0, there is an integer
m such that g ¢ A(k,m).

For a prime p and n € N we set f, = ]9”3_"2 + -+ p”3_2” + p"s_” + p”3 € Z. Then
fo < 2p™ <Pt For 0 <1 <ry < ---<r,and integers Iy, I, . . ., I, such that Sl <
k + 1, we have

i fry A+ lofry e 4 Lo fr] < (k1) fry < (k- 1)preth, (2)

Lemmas 4 and 5 are slight modifications of items (1) and (2) in the proof of [9, Theorem 1.
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Lemma 4. Let G = (eg) @ (e1) & --- ® (e4—1), where (eg) = Z. Given a prime p and
en € {—1,0,1} for n > 1, the formulas
dop = p"eo and do, 1 = fne(] + Enen(mod q)

define a T-sequence {d,,} in G.
Proof. Fix an integer k > 0 and an element g € G with g # 0. By Theorem 6, it suffices to
prove that g ¢ A(k,m) for some m € N. Let g = beg + are; + -+ + a4-1€4—1, where b € Z,
0<a; <o(e)ifo(e;) <ooanda; € Zifo(e;) = 0o. Let t = (|b|+|ay|+- - -+|ag—1])(k+1) and
m = 20t. We are going to check that g ¢ A(k, m). To accomplish this, we pick an arbitrarily
o € A(k,m) with o # 0 and prove that g # o. To this end, we prove that |pg| > b, where ¢y
is the coefficient of eq in o.

Since the sequence d,, is defined by two different subsequences, we have to consider some

particular cases to estimate ¢q.
a) Assume that

g = l1d2r1 + l2d27‘2 + -+ lsdQTS - (llprl +--+ lsprs)e(] = prl : OJ * €0,
where m < 2r; < 2ry < --- < 2r, and ¢’ € Z. Since o’ # 0, we have p™ > p°I®l > |b|, and

g #g.

b) Assume that o = l1dy,, 1 + lodop, 1 + -+ + lsdoy, 1, where m < 2r; — 1 < 2ry — 1 <
-++ < 2rg — 1 and the integers 1, ls, ..., 5 are such that I, # 0 and >, |l;| <k + 1. Then
0 = (llfﬁ + o+ lsflfrs_l + lsfrs)eo + llgrlerl(mod q) + e+ lsgrsers(mod q):

Since n® < (n+1)* — (n+1)? and rs > [b| + (k+ 1), by (2), we can estimate the coefficient
¢p of eg in o as follows
(6ol = 1l fry 4+ lacafo + Lfr] = (k4 1) > fr, —k-p ™ = (k+1) =
— p’”? + <p7”§’*7“s + ... _|_p7”§’*7“§ —k .pr§,1+1 — k- 1) > prg’ > ‘b’

Hence ¢y # b and o # g.
C) Assume that o = l1d2r1,1 -+ l2d27«2,1 + e+ lsdgrsfl + ls+1d2rs+1 —+ e+ lhd2rh> where
0 <s<hand

m<2ri —1<2ry—1<---<2r, —1,
h

MK 2y < 2ap <0 <2, L€ ZN{0},) Ll <+ 1L
=1

Since the number of summands with different powers of p in f,, is rs +1 > 10(k + 1) and
h —s < k+ 1, by a simple pigeon-hole principle, there exists r, — 2 > ig > 2 such that for
every 1 < w < h — s we have

either 7o, < 12 — (ig + 2)rs OF Tpy > 12 — (ig — 1)7s.

The set of all w such that ry,, < r® — (ip + 2)rs we denote by B (it can be empty or have
the form {1,...,d} for some 1 <6 <h—s). Set D ={1,...,h—s}\ B. Thus,

o = l1€7‘1€7"1(m0d q) +---+ lsgrsers(mod q) + (llfrl + -+ ls—lfrsf1) €O+

+ Z ls+wd2r5+w + (lsprg—rz + o+ lsp g—(i0+2)7"5> €o + (lsprg’—(io—l—l)rs + lsprg_iors> 60+
weB

+ (lsprg_(io_l)rS + lspr§> €0 + Z ls+wd2r5+w'

weD
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Denote the coefficients of ey in lines 1,...,5 by Aj,..., A5 respectively. Then ¢y = A; +
-+ As. We estimate Ay, ..., As as follows. For A; we have

Al < |l + -+l Kk +1 < p < prg’—(ioﬂ)rs. (3)
Since lS 7é 0 and I{:p < pkp < prS’ by (2)7 we have
|A2| = ‘l1fm + .+ lS—lfTs,l‘ <k ,pT§—1+1 < pT§_1+rs < p(r571)3+rs < p’rgf(iOJ’»l)TS‘ (4>

Since 3(k + 1) < ry < p”, for A3 we have

‘AB‘ = Z ls+wp7‘s+w + (lspri—ri 44 lsprgf(ioJrQ)rS) Z ’ler ‘p Zo+2)rs_|_
weB =
+15]2p $—(io+2rs 3(k + 1)pr§—(z‘o+2)rs < 73— (ig+1)rs 5)
For A, we have
prg’—iors < |A4| — |l8|pr§—(io+1)rs + |l8|p7§>_i0r$ < 9% ,pTg—iors‘ (6>
For As we have
AB - lsp —(i0— 1)7‘5 -+ lsp’f‘g + Z ls+wp7’s+w — prg—(io—l)rs . 0_//’ (7)

weD

where ¢” € Z. We distinguish between two cases.
Case 1. 0" # 0. By (3)—(7), we can estimate ¢y from below as follows

|po| = [As| — (JAL] + [As| + [As| + |A4|) ~(o=lrs _ gpyre—liotDrs _ o yrs—iors
> pram 0= Dre _(9f 4 3ypreions . prizions & i p'b‘ > |b].

Hence ¢y # b and o # g.
Case 2. ¢” = 0. Then, by (3)—(5),

r3—iors r3—(i Ts r3—(i Ts r2
[dol = Al = (JAL| + [As] + |Ag]) > priors — 3pre—lorre o pra=liot e pre > il > o).
Hence ¢g # b and o # g too. O

In the following lemma we consider Z(p*) as a subgroup of (— 2, 2] by modulo 1. For
the sake of clarity, |z|(mod 1) denotes the distance from a real number x to the nearest
integer. Putting

~ 1 1 1 1
fn: + .+

pn3 —n?2 pn3 —2n

we obtain ([11])

~ 1
O<fnzm+‘“+
p p
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Lemma 5. Let G = Z(p>) + H, where H = (eg) ® - - - & (e,—1) Is finite. Define

1 ~
doy, = — € Z(poo) and dop—1 = fn + €n(mod q) for n > 1.
pn

Then d = {d,} is a T-sequence in G.

Proof. Let k > 0 be an integer and ¢ € G with ¢ # 0. Then g = I% + apeg + -+ +
ag—1€4-1, where 0 < a; < o(e;) and 1% € Z(p™). Let m: G — Z(p>) be the projection. Then

7 ({g) + H) = (L),
Set t = p(k+ 1) + 8 and m = 20t. By Theorem 6, it is enough to prove that g & A(k, m).
To achieve this, we take o € A(k,m) \ {0} arbitrarily and show that g # ¢. To this end, we
prove two inequalities (mod 1):
1) 0 < |m(o)| and 2)if w(g) # 0, then |7(0)| < |7(g)|. This gives o # g.
Since the sequence d,, is defined by the two different subsequences, we have to consider
some particular cases to estimate m(o).
a) Assume that o = lidy,, + lodoy, + -+ + lyda,,, where m < 21 < 2ry < -+- < 2rg. If
m(g) =0, then 7(0) = o # 7w(g). If 7(g) # 0, then
k: + 1 E+1 1

0< |U‘ = ’7T<0')| = |lld27~1 + l2d2r2 e d2r5

So m(o) # w(g) and o # g.

b) Assume that 0 = lydoy —1 + lador,—1 + -+ + lsdar,—1, Where m < 2rp — 1 < 2ry — 1 <
- < 2rs — 1 and the integers 1, ls, ..., ls are such that Iy # 0 and >, , |l;| < k + 1. Since

n?<(n+1)?3—(n+1)?and r, > 5p(/€ —i— 1) + 53, we have

Z/

(o) = —5, where 2 € Z.

prg —7rs

Since [l S k+1 <2 <p™ ~1 we have the following;: if (o) = ;—;ﬁ, 2" € Z, is an irreducible

fraction then o > r® — 7, +1 > 58. Hence m(0) # m(g) and o # g.
c) Assume that o = lidar,—1 + lodary—1 + -+ + lsdoy,—1 + lsjadoy,, + -+ + lpday,, Where
0 <s < hand

m<2ri —1<2rp—1<--- < 2r, — 1,

h
< 2rgp1 < 2rapp <0 <2my, L EZN{O}D LI <k+1.

Since the number of summands with different powers of p in ﬁ isrs+ 1> 10p(k + 1) and
h —s < k+ 1, by a simple pigeon-hole principle, there exists r, — 2 > ig > 2 such that for
every 1 < w < h — s we have

either 7o < 12 — (ig + 2)rs OF Tpy > 12 — (ig — 1)7s.
The set of all w such that ryy, < r®— (ip + 2)r, we denote by K (it can be empty or have
the form {1,...,a} for some 1 <a < h—s). Set L={1,...,h —s}\ K. Thus

~ ls
o= (llerl(mod Qo+t lsers(mod q)) + llfrl 4+ 4 lsflfrs_1+zls+wd27“s+w + m 4+ .4

weK

ls ls L ls Ls
+p7“§—(¢0+2),~s + prg’—(io+1)rs + prg’—iors - p?’g’—(io—l)rs Tt ZE + %ls+wd2rs+w.
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The elements in the lines 1, 2 and 4 we denote by 01,09 and o4 respectively. Since n® <
(n+1)2—(n + 1) and 7 > B, the projection on Z(p*) of every summand in lines 1 and 2
has the form 2 with v <73 — (ig + 2)rs and § € Z. Thus,

c
(o1 + 09) = ST ro for some ¢ € Z.
Hence
B c ls ls 9
o) = m—(im)rs o Goron T prEions T m(04). (9)
Since ry > 10p(k + 1), then — 1/st < 1_11/p10 < 1_11/25 = 32 and 2k < p?* < p’*. Thus, we

can estimate 7(o4) as follows:

ls [ 1
|7T(O'4)| — ’(m+—|— 7’3> +le+w ———
p weL p

<

ps

|Ls| 11 1L,
= prg_(io_l)”'s (1 + prs T pQ""s T > T G il 7’ —(lo—1)rs+1 ; |ls+w| T3 (io—1)rs X

1 k 1 5 i 2k 1
prg’—(io—l)rs—i-l < prg—(io—l)rs( 3_1 + 5) < prg—(io—l)rs < prg—iors'

(10)

We distinguish between two cases.

Case 1. w(o4) # 0. By (10) we have the following. If 7(04) = p% is an irreducible fraction,
then a > 13 — igry > 54. Thus, by (9), we also have

/!
(o) = Z% # 0, where ¢’ € Z and (¢, p) = 1.
Since w(g) € (plﬂ) and o > 54, we have 7(0) # 7(g) and o # g.

Case 2. w(o4) = 0. Let I, = p¥ - I, where (p,l’) =1 and ¢ < k < r,. Thus, by (9),
c ls ls "
pT’S’—(io-‘rQ)Ts + p?‘g’—(io-l-l)rs prg’—iors - prg?‘—iors—w’

(o) =

where ¢’ € Z and (¢”,p) = 1. Since r2 —iogry — ¢ > 12 — (ig + 1)r;, > 53, we have 7(c) # 0
and 7(o) # 7(g). Thus o # g. O

Put Sy=0and S,,=1+2+---+nforn eN.

Lemma 6. Let q be an integer with ¢ > 2. Then (S,_1 +k)q+1i # (Sp_1+1)q+ j for every
mn>=>1,0<1i7<gq 1<k<nandl<l<msuch that (n,i, k) # (m,7,1).

Proof. We have three cases:
(1) The case n # m. We may assume that n < m — 1. Then for every 0 < 7,57 < ¢ and
1 <k < n we have
(Sp1+k)g+i<Sug+(g—1)=(Sn+1)g—1< (Sp1+1)g+J.
So (Sp—1+k)g+1# (S +10)g+jforevery0<i,j<qg, 1<k<nand1<Il<m
(2) The case n = m and i # j. It is clear that
(Spo1+k)g+i# (Spo1+1)g+ 7 forevery 1 < k,l<n
(3) The case n =m, i = j and k # [. It is clear that (S,—1 + k)g+1i # (Sp-1 +Dg+i. O
As usual, o(g) denotes the order of an element g of an Abelian group G.

In the following lemma we modify the construction of [15, Example 5] (or [16, Example
2.6.2]).
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Lemma 7. Let H = (eg) @ --- ® (eg1) and G = H © P2 (ei) = DZy(ei), where u; :=
o(e;) < oo for every i > 0. Define a sequence d = {d,, },>2,-1 as follows. For even indices we
set

dgq = €q, dg(q+1) = 2€q, . 7d2(q+uq—2) = (Uq — 1)€q, d2(q+uq—1) = €g+1, d2(q+uq) = 26q+1, R
For odd indices and for 0 < i < q and n > 1, we define

dy(ng+i)—1 = €i + €8, 1+1)g+i + €(8,142)q+i T + €84
Assume that one of the following two conditions holds:
a) there exists an integer jo > 0 such that u; = u;, for all integers j > jo and u,, is divided
by every uy,...,us—1, or b) u, — oo.
Then d = {d,} is a T-sequence in G.

Proof. Let k > 0 be an integer and g € G with g # 0. By Theorem 6, we have to show that
there is m € N such that g ¢ A(k,m).

Step 1. By construction, da, = A(n)eym), where 1 < A(n) < o(eyn)) and p(n) — oo at
n — oo. Since also (S,_1 + 1)¢+ i — oo at n — oo, we have the following: for every j > ¢
there exists m € N such that A(k,m) C H @ ;2 (e;). Thus,

M Alk,m) c (H ® @@) -
m=1 Jjzq =]

So, the condition of the Protasov-Zelenyuk criterion holds for every g ¢ H. (Note that a
similar inclusion was proved in [11, Proposition 3.3] for another special case of T-sequence.)

By Step 1, it remains to check the Protasov-Zelenyuk criterion only for non-zero elements
of H. Thus, in what follows, we assume that ¢ € H and g # 0.

Note also that the summands of all the elements dy(,44—1 — €; are independent, where
0 < i< qgandn > 1. Indeed, this follows from Lemma 6 and the independence of the
sequence {e,}.

Step 2. Let g € A(k,2m) for some natural m. Then g has the following representation

g = lidar, 1 + ladory 1 + -+ + lsdop, 1 + lsprdor, | + lopodar o + -+ + lpday,, (11)

where all summands are nonzero, Y1, |l;| < k+1, 0 < s < h (by the construction of d)
and
2m <2r =1 <2ry =1 < -+ < 2rg — 1, 2m < 2rgyq < 2rg49 < -+- < 21,

Since all the summands of all the elements dy(ng+4)—1 — €; are independent and since g € H,
by the construction of the elements dy,, and (11), there is a subset € of the set {s+1,...,7r,}
such that

Ldar, 1 + Y Ludar, € H. (12)

we

Step 3. By Step 2, to prove the lemma it is enough to find mg such that (12) does not
hold. We consider two cases a) and b) separately.
Assume that a) holds. Set my = 4¢(jo+1)(k+1). Then do,,—1 — €, (modq) CONtains exactly
1 1
t=—(rs —rs(modq)) > —(mo—q) >4k +3
q q

independent summands of the form e; with j > (@ +1) > mgo > jo. Since lsdy,,—1 # 0 and

uj, is divided by every wuy, ..., u,—1, we may assume that /5 is not divided by w;,. So, lsday, 1
contains at least 4k 4 3 non-zero independent summands of the form [,e; with j > jo.
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Since |Q2] < h—s < k and [,,dy,, has the form a,e,, the conclusion of (12) does not hold.
Thus, g € A(k,2my).

Assume that b) holds. Choose j, > ¢ such that u; > 2(k + 1) for every j > jo. Set
mo = 450(q+1)(k+1). Then da,,—1 —€r,(mod q) cONtains at least i(rs—rs(mod q)) > é(mo—q) >
4j0(k + 1) summands that are multiples of e;. So, since |ls| < k+1, lsda,,—1 contains at least
3(k 4+ 1) non-zero independent summands of the form l;e; with j > jo.

Since |Q2] < h—s < k and [,,dy,, has the form a,e,, the conclusion of (12) does not hold.
Thus, g € A(k, 2my). O

4. Proofs of Theorems 3, 4 and 5. Following [3], we say that a sequence u = {u,} is
a T'B-sequence in a group G if there is a precompact Hausdorff group topology on G in
which u,, — 0.

Proof of Theorem 1. Let G be an infinite Abelian group. It is known ([6]) that G admits
a non-trivial T'B-sequence u. As it was noted in [8|, a sequence u is a T'B-sequence if and only
if it is a T-sequence and (G, u) is maximally almost periodic. So n(G, u) = 0. Thus, G admits
a complete non-discrete Hausdorff group topology with trivial von Neumann radical. O

Let X be an Abelian topological group and u = {u,} a sequence of elements of X".
Following D. Dikranjan, C. Milan and A. Tonolo (|7]), we denote by s,(X) the set of all
x € X such that (u,,z) — 1.

A proof of the following lemma can be found, for example, in [16, Example 2.6.3].

Lemma 8. Let dy, = # € Z(p™®) and d = {da,}. Then x € s3(Ap) if and only if there
exists m = m(x) € Z such that

(A, z) = exp(2mimA) for all X € Z(p™). (13)

In other words, x € s3(A,) if and only if v = ml for some m € Z. In particular,

Cl (sa(Z(poo))) =A,.

The following theorem is the algebraic part of [8, Theorem 4]. It shall be used to compute
von Neumann kernels.

Theorem 7. Ifd = {d,} is a T-sequence of an Abelian group G then n(G,d) = sq ((Gg)")"
algebraically.

Another ingredient of the proof is the following reduction principle.

Lemma 9. Let H be a subgroup of an Abelian group G. If there exists a subgroup G' of G
containing H such that H € NR(G") (or H € NRC(G")) then H € NR(G) (respectively,
H e NRC(G)).

Proof. Since H € NR(G"), there exists a Hausdorff group topology 7/ on G’ such that
H = n(G',7'). Furthermore, if H € NRC(G’) then 7' can be chosen to be complete. Let
7 be the group topology on G such that G’ € 7 and (G’,7’) is a subspace of (G, 7). We
note that 7 is complete whenever 7’ is. Since (G’,7’) is an open subgroup of (G, 7), one has
n(G',7") = n(G, ) (see also [8, Lemma 4| for a more general statement). This proves that

H=n(G,7). O
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Proof of Theorem 3. Our goal is to construct a T-sequence d in G satisfying
sa(Ga)) = . (14)

Combining this with Theorem 7, we obtain that n(G,d) = H. Since (G, d) is complete, this
shows that H € NRC(G).

The rest of the proof is split into the following four cases.
(1) H is infinite. (2) H is finite and G is not torsion. (3) H is finite, G is torsion but not
reduced. (4) H is finite and G is both torsion and reduced.

Since H is finitely generated, it is a direct finite sum of cyclic groups.
(1) H s infinite. Then H = (eo)®(e1)®- - -®(e4-1), where (eg) = Z. Applying the reduction
principle (Lemma 9), we may assume that G = H. Choose any prime p and let ¢, = 1 for
all n € N. Let d = {d,,} be the T-sequence in G as in Lemma 4. To establish (14), it suffices
to prove that sq((Gg4)") = 0. Let

w=zg+x1+ - +x41 € (Gy)",z; € (e;)", and (d,w) — 1.

Then (dan,w) = (p"eo,z0) — 1. Hence zy € Z(p™) (see [2] or [4, Remark 3.8]). If =g = £,

p € Z,7 > 0, then for n = ¢s + i > 7 we have (da(gsti)—1,w) = (€;, ;) for every 0 < i < ¢.
So (da(gs+i)—1,w) — 1 only if 2; = 0 for every i. Hence w = 0.
(2) H is finite and G is not torsion. Fix ey € G such that (ey) = Z. Since H is finite,
HnN(e) = 0. Let H = (e1) ®--- ® (e4—1) be a direct decomposition of H. Then G’ =
(eg) @ (e1) @ --- B (e4—1) = Z @ H is a subgroup of G containing H. By Lemma 9, we may
assume that G = G'.

Choose any prime p and set €, = 1 if n(mod q) > 0 and &, = 0 if n(mod q) = 0. Let
d = {d,,} be the T-sequence in G as in Lemma 4. To establish (14), it suffices to show that
Cl(sa(GH)) =7Z" =T. Let

w=xg+x1+ - +x41 € (Gy)",z; € (e;)", and (d,w) — 1.
Then (da,,w) = (p"ep, x9) — 1. Hence zg € Z(p™) (see [2| or [4, Remark 3.8]). Let o =
I%,p € Z,7 > 0. Then for any n = ¢s +i > 7 we have (dys_1,w) = 1ifi = 0, and
(do(gsti)—1,w) = (e5,2;) if 0 <7 < q. So (dap—1,w) = 1 only if 2; = 0 for every 0 < i < gq.
Thus w = zg, where zo € Z(p™>®) C T. So sa(G}) C Z(p>). Let us prove the converse
inclusion. Let w = xy = 1% € Z(p>=),p € Z,7 > 0. By the definition of d,, we have
(dop, xo) = exp{2ﬂiz)—f}, (dap—1,10) = exp{2m’fLTp}.

Thus, (dm, o) = 1 for every m > 27 and hence sq(G%) 2 Z(p™).

Hence sq(G%) = Z(p*) and Cl(sq(GY)) = T.
(3) H is finite, G is torsion but not reduced. Then G contains a subgroup isomorphic to
Z(p>) for some prime p. By Lemma 9, we may assume that G = Z(p>*) + H. Let H =
(€0) ® - -+ @ (e4—1) be a direct decomposition of H. Let d = {d,,} be the T-sequence in G as
in Lemma 5. To establish (14), it suffices to prove that H+ = Cl(sq((Gq)")).

Let us prove first that sq((Gy)") € H+. We use the notations from Lemma 3. Assume
that

w=x0+y € sa((Gg)"), where xg € A,,y € H.

Then (dap,,w) = (dan,Xo) — 1. By (13), xg = m1 for some m € Z and (A, xq) = exp(2wim\),

VA € Z(p™). In particular, (f,,%o) = exp(2mwimJf,) for every n > 1. By (8), we obtain that
(fn,x0) — 1. So, for every 0 < i < ¢, we have (s — 00)
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<d2(sq+i)—law) = (fsq + eivw) = (fSQ7X0) : (61',&)) — (ei7w) =1L
So w € {e;)* for every 0 < i < q. Hence w € H*.
Let us show now the reverse inclusion H+ C Cl(sq((Gy)")). By Lemma 3, it is enough
to prove that {Sy U (p*1)} C s4((G4)"). Let w € Sy. Then, by the construction of Sy, for
w=x+y and xg = (zg,...,2,-1,0,...) =m -1 we have

1
(dop,w) = exp{27ri—(9co 4+ xk,lpkfl)}—) 1, at n — oo.
pTL

(d2(8q+i)—17w) = (fsq7X0) (e w) = (qu,Xo) = eXp{zWiJiqm} — 1.
Hence Sy C sq((Gg)"). For p*1 we obtain

1
(dzn,pkl) = exp{?wiﬁ ~pk}—> 1, at n — oo.

(da(sgii-1,0°1) = (fuqr P1) = exp{2mi fugp*} — 1.
Thus, H+ = Cl(sq((Ga)")).

(4) H is finite and G is both torsion and reduced. Since G is not bounded, G contains an
independent sequence {b,} of elements such that o(b,) — oco. Let H = (eg) & --- & (e4-1)
be a direct decomposition of H. Using ¢ times Lemma 1, we can find m € N such that the
sequence {eg, €1, ...,€4-1,bm,bmi1, ...} is independent. Define e, = b4 for all integers
k > 0. Clearly, u; := o(e;) < oo for every i > 0 and u; — oo. By Lemma 9, we may assume
that

G=H® @(@ = EB(&-).

Then (Ga)" = [T 1)
Let d = {d,} be the T-sequence in G as in Lemma 7. To establish (14), it suffices to
prove that

Cl(sa((Ga)")) = [ [(ea)- (15)
i=q

We modify the proof of [11, Proposition 3.3]. Let w = (ag,a1,...) € sa((Ga)"). By
definition, there exists N € N such that |1 — (dg,,w)| < 0.1,¥n > N. Thus, there is Ny >
N such that |1 — (je,w)| = |1 — (Je,a;)] < 0.1,¥5 = 1,...,u4 — 1, for every I > Nj.
This means that a; = 0 for every I > Ny. So w € @ (e;) C (Gq)". Since (da(ngri—1,w)
— 1 too and (dg(ngti-1,w) = (€;,a;) for all sufficiently large n, we obtain that a; = 0 for
any i = 0,...,¢ — 1. Thus sq((Ga)") € @D,-,(e:). The converse inclusion is trivial. Hence

sa((Ga)") = D2, (e:) and it is dense in [ (e;). So, Cl(sa((Ga)")) = [ 12, (ei)- O

Proof of Theorem 4. Let us prove the implication (1) = (2). Assume that G contains a
subgroup of the form H®“). Let H = (e8) @ - -- & (el) with ¢} € G. By our assumption, G
contains a subgroup of the form Y, ®Y; @ --- @ Y,, where

Y, =@Plel). 0<j<q el €6,
=0

and the order of e{ is equal to u; for every i > 0. By the reduction principle (Lemma 9),
we may assume that G = Yy, @Y, @ --- @ Y,. Further, since the von Neumann radical of
a product of topological groups is the product of their von Neumann radicals, it is enough to
construct a Hausdorff group topology 7; on Y; such that n(Yj, 7;) = (¢}). So, we can restrict
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ourselves to the case H = (ep) and G = H ® @, (e;) = Doy (€i), where the order of e; is
equal to u for every ¢ > 0.

Let d = {d,} be the T-sequence in G as in Lemma 7. As in the proof of Theorem 3,
we only need to show that equality (14) holds. To this end, it is enough to prove that
Cl(sa((Ga)™)) = T1;2,(es). The proof of this equality is the same as the proof of equality (15)
in item (4) of Theorem 3 (where one needs to take ¢ = 1).

Implication (2) = (3) is trivial.

Let us prove implication (3) = (1). Let H = (e1) & --- & (e,). Assume that (1) fails.
By Lemma 2, there exists 1 < 75 < ¢ such that G does not contain a subgroup of the

aj41 at

form (e;,)®). Set n;, = o(e;,). Let n;, = pf'...p/* and expG = p§*...p" P pE
where py, ..., p; are distinct prime integers. For 1 < j < [ we put m; = exp G/p?j_kj+1.

7 G — G, mj(g) = mjg, and G; = 7;(G). Then 7;(e;,) # 0 for every 1 < j < [.

(a) Let us prove that there exists 1 < j <1 such that G; is finite.

Assume for a contradiction that G; is infinite for every j. Since exp G; = p?’ —kitt G;

J
contains a subgroup of the form
o

P b:). where b; € G; and (b;) = Z(p;).
i=1
Thus, for every i > 1 there exists an element b; € G such that o(b;) = p?j and 7;(b;) = b;.
Indeed, if y is any element such that m;(y) = b;, then we may put b; = c;y, where ¢; =
expG/p;’ (and m; = ¢; ~p§j_1).
Let us prove that the sequence {b;} is independent. Assuming the converse we obtain
that

s1biy, + Sabiy, + -+ + sub;, = 0 and s,.b;, #0,1 <7 < w. (16)
Let s, = pi" - A;, where p and A, are coprime. Set v = min{vy,...,v,}. By our choice of b;
we have v < k;. Thus, if we multiply equality (16) by ¢; - pfrvfl then we obtain
Aip; T biy 4 Asp by, + -+ Awpl T s, = 0.
Since there exists r such that v, = v and Arp;-”“_”bir = A,b;, # 0, we obtain that the

elements EZ are dependent. Since the sequence {E} is independent, we obtain a contradiction.
Since the sequence {b;} is independent, G contains a subgroup of the form

[e. 9]

P i), where (b)) = Z(p}).

i=1

7;11)

for every 1 < j < I. Since py,...,p; are coprime, G contains a subgroup of the form (e;,)®).
This is a contradiction. Thus there exists 1 < j <[ such that G is finite.

(b) Let us prove that there is no Hausdorff group topology T such that n(G,7) = H. (We
repeat the arguments of D. Remus (see [5])).

Let 7 be any Hausdorft group topology on G and let j be such that G; is finite. Then
Ker(7;) is open and closed. So n(G, ) C Ker(7;). Since, 0 # 7;(e;,) € H/Ker(7;), we obtain
that H # n(G, 7). O

Proof of Theorem 5. (1) is equivalent to (2) by Corollary 1.
Let us prove that (2) yields (3). If G does not satisfy condition (3) then expG < oc.

Let expG = pi'ps*...p¢*, where py,...,p; are distinct prime integers. By Lemma 2, there
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exists 1 < 79 < t such that G' does not contain a subgroup of the form Z(pzjo)(“). Set
H = (e;,), where o(e;,) = p?go. Then H is finite and, by Theorem 4, H ¢ N'R(G). This is
a contradiction. Thus, (2) yields (3).

Let us prove that (3) yields (1). If exp G = oo, the assertion follows from Theorem 3. If
exp G < 0o, the assertion follows from Theorem 4. O
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